【题目】若存在
与正实数
,使得
成立,则称函数
在
处存在距离为
的对称点,把具有这一性质的函数
称之为“
型函数”.
(1)设
,试问
是否是“
型函数”?若是,求出实数
的值;若不是,请说明理由;
(2)设
对于任意
都是“
型函数”,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,边长为
的正方形
与梯形
所在的平面互相垂直,已知
,
,
,点
在线段
上.
![]()
(1)证明:平面
平面
;
(2)判断点
的位置,使得平面
与平面
所成的锐二面角为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图(1)为东方体育中心,其设计方案侧面的外轮廓线如图(2)所示;曲线
是以点
为圆心的圆的一部分,其中
,曲线
是抛物线
的一部分;
且
恰好等于圆
的半径,
与圆相切且
.
![]()
(1)若要求
米,
米,求
与
的值;
(2)当
时,若要求
不超过45米,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的右焦点为
,直线为
.
(1)求到点
和直线
的距离相等的点
的轨迹方程;
(2)过点
作直线交椭圆
于点
,
,又直线
交
于点
,若
,求线段
的长;
(3)已知点
的坐标为
,
,直线
交直线
于点
,且和椭圆
的一个交点为点
,是否存在实数
,使得
?若存在,求出实数
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:
(1)甲中奖的概率
;
(2)甲、乙都中奖的概率
;
(3)只有乙中奖的概率
;
(4)乙中奖的概率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将数列
的前
项分成两部分,且两部分的项数分别是
,若两部分和相等,则称数列
的前
项的和能够进行
等和分割.
(1)若
,试写出数列
的前
项和所有等和分割;
(2)求证:等差数列
的前
项的和能够进行
等和分割;
(3)若数列
的通项公式为:
,且数列
的前
项的和能够进行等和分割,求所有满足条件的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列A:
,
,…
(
).如果对小于
(
)的每个正整数
都有
<
,则称
是数列A的一个“G时刻”.记“
是数列A的所有“G时刻”组成的集合.
(1)对数列A:-2,2,-1,1,3,写出
的所有元素;
(2)证明:若数列A中存在
使得
>
,则
;
(3)证明:若数列A满足
-
≤1(n=2,3, …,N),则
的元素个数不小于
-
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程
(2)设M,N为C1上两点,若OM⊥ON,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com