【题目】图(1)为东方体育中心,其设计方案侧面的外轮廓线如图(2)所示;曲线
是以点
为圆心的圆的一部分,其中
,曲线
是抛物线
的一部分;
且
恰好等于圆
的半径,
与圆相切且
.
![]()
(1)若要求
米,
米,求
与
的值;
(2)当
时,若要求
不超过45米,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】椭圆
经过
为坐标原点,线段
的中点在圆
上.
(1)求
的方程;
(2)直线
不过曲线
的右焦点
,与
交于
两点,且
与圆
相切,切点在第一象限,
的周长是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(1)若函数f(x)在
处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式
在
上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
.
(1)若直线不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于
,交
轴正半轴于
,求
的面积的最小值并求此时直线
的方程;
(3)已知点
,若点
到直线
的距离为
,求
的最大值并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图像向左平移
个单位长度,再将图像上所有点的横坐标伸长到原来的
倍(纵坐标不变),得到
的图像.
(1)求
的单调递增区间;
(2)若对于任意的
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在
与正实数
,使得
成立,则称函数
在
处存在距离为
的对称点,把具有这一性质的函数
称之为“
型函数”.
(1)设
,试问
是否是“
型函数”?若是,求出实数
的值;若不是,请说明理由;
(2)设
对于任意
都是“
型函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com