精英家教网 > 高中数学 > 题目详情
16.y=1-$\frac{1}{2}$sinx的值域[$\frac{1}{2}$,$\frac{3}{2}$].

分析 由条件利用正弦函数的值域,不等式的基本性质,求得函数y的值域.

解答 解:由于sinx∈[-1,1],∴$\frac{1}{2}$sinx∈[-$\frac{1}{2}$,$\frac{1}{2}$],
∴y=1-$\frac{1}{2}$sinx∈[$\frac{1}{2}$,$\frac{3}{2}$],
故答案为:[$\frac{1}{2}$,$\frac{3}{2}$].

点评 本题主要考查正弦函数的值域,不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知曲线y=$\frac{x^2}{2}$-3lnx的一条切线的斜率为-2,则该切线的方程为(  )
A.y=-2x-$\frac{3}{2}$-3ln3B.y=-2x+$\frac{3}{2}$C.y=-2x+$\frac{21}{2}$-3ln3D.y=-2x+$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设 a,b是互不垂直的两条异面直线,则下列命题成立的是(  )
A.存在唯一直线l,使得l丄 a,且l丄bB.存在唯一直线l,使得l∥a,且l丄b
C.存在唯一平面α,使得 a?α,且 b∥αD.存在唯一平面α,使得a?α,且b丄α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某个几何体的三视图如图所示,其中俯视图是边长为2的正方形,点B为边AC的中点,根据图中标出的尺寸(单位cm)可得这个几何体的体积是(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=2,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{2c}$)=0则|$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中三边分别为a,b,c,其对应的角为A,B,C,已知a=$\frac{2\sqrt{6}}{3}$,b=2,A=45°.三角形,若有解,求角B及边c,若无解说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}的通项公式是an=$\frac{n}{{n}^{3}+128}$,则该数列中的最大项是$\frac{1}{48}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.使函数y=3sin(2x+2θ)的图象关于y轴对称,则θ为$\frac{kπ}{2}$+$\frac{π}{4}$,k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn=a2n-1(a≠0,±1,n∈N*),试判断{an}是否为等比数列,为什么?

查看答案和解析>>

同步练习册答案