【题目】已知函数
.
(1)当
,
取一切非负实数时,若
,求
的范围;
(2)若函数
存在极大值
,求
的最小值.
【答案】(1)
(2)![]()
【解析】试题分析:(1)当
时,
,原题分离参数得
恒成立,右边求导求出其最大值即可;(2)对其求导
,当
时,
在
上为单增函数,无极大值;当
时,
在
上为增函数,在
上为减函数,其中
满足
,故可得极大值
,令
,得
,对其求导可得其最小值.
试题解析:(1)当
时,
,
恒成立等价于
恒成立,令
,
,
,当
时,
恒成立,即
在
内单调递减,故
,可得
在
内单调递减,故
.
(2)
,
①当
时,
,所以
,所以
在
上为单增函数,无极大值;
②当
时,设方程
的根为
,则有
,即
,所以
在
上为增函数,在
上为减函数,所以
的极大值为
,即
,因为
,所以
,令
则
,
设
,则
,令
,得
,所以
在
上为减函数,在
上为增函数,所以
得最小值为
,即
的最小值为-1,此时
.
科目:高中数学 来源: 题型:
【题目】将圆
为参数)上的每一点的横坐标保持不变,纵坐标变为原来的
倍,得到曲线![]()
(1)求出
的普通方程;
(2)设直线
:
与
的交点为
,
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,且过点(1,
).
(I)求椭圆C的方程;
(Ⅱ)设与圆O:x2+y2=
相切的直线l交椭圆C与A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在
市开展了团购业务,
市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.
(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;
(2)从所调查的50家商家中任取两家,用
表示这两家商家参加的团购网站数量之差的绝对值,求随机变量
的分布列和数学期望;
(3)将频率视为概率,现从
市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为
,试求事件“
”的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,
平面
是
的中点,
是
上的点且
为
边
上的高.
![]()
(1)证明:
平面
;
(2)若
,求三棱锥
的体积;
(3)在线段
上是否存在这样一点
,使得
平面
?若存在,说出
点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数g(x)=asinxcosx(a>0)的最大值为
,则函数f(x)=sinx+acosx的图象的一条对称轴方程为( )
A.x=0
B.x=﹣ ![]()
C.x=﹣ ![]()
D.x=﹣ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
是大于
的常数)的左、右顶点分别为
、
,点
是椭圆上位于
轴上方的动点,直线
、
与直线
分别交于
、
两点(设直线
的斜率为正数).
(Ⅰ)设直线
、
的斜率分别为
,
,求证
为定值.
(Ⅱ)求线段
的长度的最小值.
(Ⅲ)判断“
”是“存在点
,使得
是等边三角形”的什么条件?(直接写出结果)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com