精英家教网 > 高中数学 > 题目详情
12.如果满足∠ABC=60°,AC=12,BC=k的三角形恰有一个,那么k的取值范围是(  )
A.0<k≤12B.0<k<12C.0<k≤12或k=8$\sqrt{3}$D.0<k<12或k=8$\sqrt{3}$

分析 由题意可得ksin60°=12或12≥k时,满足三角形恰有一个,解不等式可得.

解答 解:由题意可得当ksin60°=12或12≥k时,满足三角形恰有一个,
解得k=$\frac{12}{sin60°}$=$\frac{12}{\frac{\sqrt{3}}{2}}$=8$\sqrt{3}$,0<k≤12,
故选:C.

点评 本题考查三角形解得个数的判断,数形结合是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某单位招聘职工,招聘过程包括笔试和面试两轮,规定通过笔试后方可参加面试,面试合格即被录取,且两轮测试是相互独立的.已知甲、乙、丙三人到该单位来应聘,且甲、乙、丙三个同学能通过笔试的概率分别是0.5,0.6,0.4,能通过面试的概率分别是0.6,0.5,0.75.
(1)求恰有两人通过笔试的概率;
(2)将甲、乙、丙三人被录用的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(1-x)6(1十x+x24的展开式中,含x7的项的系数为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=cosx(asinx-cosx)+cos2(x-$\frac{π}{2}$),x∈R,a>0的最大值为2,则f(x)在区间[0,$\frac{π}{2}$]上的最大值与最小值的差为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在(-1,1)上的奇函数,且当x∈(0,1)时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,1)上的解析式;
(2)证明f(x)在(0,1)上是减函数;
(3)当m取何值时,f(x)=m在(-1,0)上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等比数列{an}满足a9=a8+2a7,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{1}{x•sinθ}$+2lnx在[$\frac{1}{2}$,+∞)上为增函数,且θ∈(0,π),f(x)=mx-$\frac{m-1}{x}$,m∈R.
(1)求θ的值;
(2)当m≥1,x≥1时,求证:f(x)≥g(x);
(3)设h(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一个x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条渐近线向上平移两个单位长度后与抛物线y2=4x相切,则双曲线的离心率e=(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案