精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=cosx(asinx-cosx)+cos2(x-$\frac{π}{2}$),x∈R,a>0的最大值为2,则f(x)在区间[0,$\frac{π}{2}$]上的最大值与最小值的差为3.

分析 化简f(x)根据最大值求出a,得出f(x)的解析式,结合正弦函数的图象与性质求出f(x)的最大值与最小值.

解答 解:f(x)=asinxcosx-cos2x+sin2x=$\frac{a}{2}$sin2x-cos2x=$\sqrt{\frac{{a}^{2}}{4}+1}$sin(2x-φ)(tanφ=$\frac{2}{a}$),
∴$\sqrt{\frac{{a}^{2}}{4}+1}$=2,解得a=2$\sqrt{3}$.∴f(x)=2sin(2x-$\frac{π}{6}$).
∴当x∈[0,$\frac{π}{2}$]时,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$].
∴当2x-$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)取得最小值-1;当2x-$\frac{π}{6}$=$\frac{π}{2}$时,f(x)取得最大值2.
∴f(x)在区间[0,$\frac{π}{2}$]上的最大值与最小值的差为2-(-1)=3.
故答案为:3.

点评 本题考查了三角函数的恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知(ω+x)6=a0+a1x+a2x2+…+a6x6,其中ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$$\overrightarrow{i}$,则|a0|+|a1|+…+|a6|等于(  )
A.1B.26C.$\frac{{2}^{6}+1}{2}$D.$\frac{{2}^{6}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,方程|x|+|y|=4所表示的曲线是以(0,4),(4,0),(0,-4),(-4,0)为顶点的正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,2),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sinx=$\frac{\sqrt{5}-1}{2}$,sin2($\frac{x}{2}$-$\frac{π}{4}$)的值等于$\frac{3-\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果满足∠ABC=60°,AC=12,BC=k的三角形恰有一个,那么k的取值范围是(  )
A.0<k≤12B.0<k<12C.0<k≤12或k=8$\sqrt{3}$D.0<k<12或k=8$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,z1=1+3i,z2=-2+4i,复数z=z1+z2,则复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\sqrt{3x-{x^2}}$的定义域为(  )
A.[-3,0]B.(-∞,-3]∪[0,+∞)C.[0,3]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242;
(2)(2a-3b${\;}^{-\frac{2}{3}}$)•(-3a-1b)÷(4a-4b${\;}^{-\frac{5}{3}}$).

查看答案和解析>>

同步练习册答案