精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若m=0,求函数f(x)的定义域;

(2)若函数f(x)的值域为R,求实数m的取值范围;

(3)若函数f(x)在区间上是增函数,求实数m的取值范围.

【答案】(1){x|x≠0}; (2)m≤-4或m≥0;(3).

【解析】

(1)直接由对数式的真数大于0,即可求解x的范围,得到答案;

(2)由内层函数二次函数的判别式大于等于0,即可求解m的取值范围;

(3)由题意可得,函数的对称轴,列出关于的不等式 ,即可求解.

(1)若m=0,函数f(x)=,其定义域为{x|x≠0};

(2)函数f(x)的值域为R,说明t=x2-mx-m能够取到大于0的所有实数,

∴△=m2+4m≥0,即m≤-4或m≥0;

(3)函数f(x)在区间上是增函数,

则函数t=x2-mx-m的对称轴x=,且

解得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)与g(x)是定义在同一区间[ab]上的两个函数,若函数yf(x)-g(x)在x[ab]上有两个不同的零点,则称f(x)和g(x)在[ab]上是“关联函数”,区间[ab]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2xm在[0,3]上是“关联函数”,则m的取值范围是 (  ).

A. B.[-1,0] C.(-∞,-2] D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程为2kx2﹣2x﹣5k﹣2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且 =λ.

(1)求证:平面ADM⊥平面PBC;
(2)是否存在实数λ,使得二面角P﹣DE﹣B的余弦值为 ?若存在,求出实数λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,点是棱的中点, 是底面上(含边界)一动点,满足,则线段长度的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=满足:对任意的实数x1x2,都有(x1-x2)[fx1)-fx2)]>0成立,则实数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)设集合C={x|m+1<x<2m-1},若BC=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的棱长为1,点分别是棱的中点.

(Ⅰ)求二面角的余弦值;

(Ⅱ)以为底面作正三棱柱,若此三棱柱另一底面三个顶点也都在该正方体的表面上,求这个正三棱柱的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品企业一个月内被消费者投诉的次数用表示.据统计,随机变量的概率分布如下表所示.

0

1

2

3

0.1

0.3

(1)求的值和的数学期望;

(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

同步练习册答案