分析 由已知中函数y=a2x+2ax-1(a>0,且a≠1)在区间[-1,1]上的最大值是7,我们利用换元法,及二次函数的性质,我们易构造关于a的方程,解方程即可得到答案.
解答 解:(1)a>1时,令ax=t,x∈[-1,1],则$t∈[\frac{1}{a},a]$,
f(t)=t2+2t-1=(t+1)2-2在$[\frac{1}{a},a]$上单调递增,
∴$f(t)_{max}=f(a)={a}^{2}+2a-1=7$即a2+2a-8=0,解得a=-4(舍去)或a=2.
(2)0<a<1时,令ax=t,x∈[-1,1],则$t∈[a,\frac{1}{a}]$,
f(t)=t2+2t-1=(t+1)2-2在$[a,\frac{1}{a}]$上单调递增,
∴$f(t)_{max}=f(\frac{1}{a})=\frac{1}{{a}^{2}}+\frac{2}{a}-1=7$.
解得$a=-\frac{1}{4}$(舍去)或$a=\frac{1}{2}$.
综上:a=2或$a=\frac{1}{2}$.
点评 本题考查的知识点是函数的最值及其几何意义,指数函数的值域,二次函数的单调性,其中利用换元法将已知中的函数化为二次函数是解答本题的关键,体现了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)在[0,$\frac{π}{4}$]上是增函数 | ||
| C. | f(x)的图象关于直线x=$\frac{5}{6}$π对称 | D. | f($\frac{2π}{3}$)=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪[2,+∞) | B. | (-2,2) | C. | (-2,2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤2 | B. | a≥-2 | C. | a≤-2或 a≥2 | D. | -2≤a≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若一个平面内有三个点到另一个平面的距离都相等,则这两个平面平行 | |
| B. | 若一条直线与一个平面内两条直线都垂直,那么这条直线垂直于这个平面 | |
| C. | 若两个平面都垂直于第三个平面,则这两个平面平行 | |
| D. | 若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com