【题目】已知中心在原点的椭圆C的一个顶点为,焦点在x轴上,右焦点到直线的距离为.
求椭圆的标准方程;
若直线l:交椭圆C于M,N两点,设点N关于x轴的对称点为点与点M不重合,且直线与x轴的交于点P,求的面积的最大值.
科目:高中数学 来源: 题型:
【题目】2019年是新中国成立70周年,也是全面建成小康社会的关键之年.为喜迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.下面的茎叶图是参赛两组选手的答题得分情况,则下列说法正确的是( )
甲 | 乙 | |||||
5 | 7 | 7 | ||||
7 | 3 | 2 | 8 | 3 | 4 | 5 |
3 | 9 | 1 |
A.甲组选手得分的平均数小于乙组选手得分的平均数.
B.甲组选手得分的中位数大于乙组选手得分的平均数.
C.甲组选手得分的中位数等于乙组选手得分的中位数.
D.甲组选手得分的方差大于乙组选手得分的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,分别是的中点,分别是的中点,将四边形,分别沿,折起,使平面平面,平面平面,如图2所示,是上一点,且.
(1)求证:;
(2)线段上是否存在点,使得?若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.
(1)求该抛物线的方程;
(2)过抛物线焦点的直线交抛物线于, 两点,分别在点, 处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几千年的沧桑沉淀,凝练了西樵山的美,清幽秀丽的自然风光,文化底蕴厚重的旅游,古朴自然的民俗风情.自明清以来,文人雅士,群贤毕至,旅人游子,纷至沓来,使秀美的西樵山成为名嗓南粤的旅游热点.如图,游客从某旅游景区的景点处下山至处有两种路径,一种是从沿直线步行到,另一种是先从乘景区观光车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从乘观光车到,在处停留20分钟后,再从匀速步行到.假设观光车匀速直线运行的速度为250米/分钟,山路长为2340米,经测量,,.
(1)求观光车路线的长;
(2)问乙出发多少分钟后,乙在观光车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 (k为常数,e=2.718 28…是自然对数的底数).
(1)当k≤0时,求函数f (x)的单调区间;
(2)若函数f (x)在(0,2)内存在两个极值点,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的离心率为,右准线方程为.
求椭圆C的标准方程;
已知斜率存在且不为0的直线l与椭圆C交于A,B两点,且点A在第三象限内为椭圆C的上顶点,记直线MA,MB的斜率分别为,.
若直线l经过原点,且,求点A的坐标;
若直线l过点,试探究是否为定值?若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com