【题目】如图1,在矩形中,,分别是的中点,分别是的中点,将四边形,分别沿,折起,使平面平面,平面平面,如图2所示,是上一点,且.
(1)求证:;
(2)线段上是否存在点,使得?若存在,求出的长,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数,的图象与直线可能有两个不同的交点;
②函数与函数是相等函数;
③对于指数函数与幂函数,总存在,当时,有成立;
④已知是方程的根,是方程的根,则.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的定义域;
(2)若函数有且仅有一个零点,求实数m的取值范围;
(3)任取,若不等式对任意恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①函数y=2x与函数y=log2x互为反函数;
②若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
③若,则f(x)=x2-2;
④函数y=log2(1-x)的单调减区间是(-∞,1);
其中所有正确的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆C的一个顶点为,焦点在x轴上,右焦点到直线的距离为.
求椭圆的标准方程;
若直线l:交椭圆C于M,N两点,设点N关于x轴的对称点为点与点M不重合,且直线与x轴的交于点P,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,满足,.
(1)求函数的解析式;
(2)若关于的不等式在上有解,求实数的取值范围;
(3)若函数的两个零点分别在区间和内,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com