精英家教网 > 高中数学 > 题目详情

【题目】如图1,在矩形中,分别是的中点,分别是的中点,将四边形分别沿折起,使平面平面,平面平面,如图2所示,上一点,且.

(1)求证:

(2)线段上是否存在点,使得?若存在,求出的长,若不存在,请说明理由.

【答案】(1)见解析;(2)存在,.

【解析】

1)结合平面图形的性质,利用线面垂直的判定定理可得平面,则,再由面面垂直证明线面垂直,进而可得,利用勾股定理可得,从而可得结论;(2)当时,平面,在上取点,使得,连接,可证明平面,此时.

1)折叠前,

所以,又

所以

因为,所以

因为平面平面,平面平面 ,所以

所以

由(1)得,所以

在梯形中,易得,所以

,所以.

2

时,.

上取点,使得,连结

所以

,所以

是平行四边形,所以

此时

所以当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.

(I)讨论f(x)的单调性

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①函数的图象与直线可能有两个不同的交点;

②函数与函数是相等函数;

③对于指数函数与幂函数,总存在,当时,有成立;

④已知是方程的根,是方程的根,则.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的定义域;

2)若函数有且仅有一个零点,求实数m的取值范围;

3)任取,若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:

①函数y=2x与函数y=log2x互为反函数;

②若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1

③若,则fx=x2-2

④函数y=log21-x)的单调减区间是(-∞1);

其中所有正确的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆C的一个顶点为,焦点在x轴上,右焦点到直线的距离为

求椭圆的标准方程;

若直线l交椭圆CMN两点,设点N关于x轴的对称点为与点M不重合,且直线x轴的交于点P,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

查看答案和解析>>

同步练习册答案