【题目】给出下列四个命题:
①函数,的图象与直线可能有两个不同的交点;
②函数与函数是相等函数;
③对于指数函数与幂函数,总存在,当时,有成立;
④已知是方程的根,是方程的根,则.
其中正确命题的序号是__________.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+,且此函数的图象过点(1,5).
(1)求实数m的值并判断f(x)的奇偶性;
(2)判断函数f(x)在[2,+∞)上的单调性,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).
(1)把利润表示为年产量的函数;
(2)年产量是多少时,工厂所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是新中国成立70周年,也是全面建成小康社会的关键之年.为喜迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.下面的茎叶图是参赛两组选手的答题得分情况,则下列说法正确的是( )
甲 | 乙 | |||||
5 | 7 | 7 | ||||
7 | 3 | 2 | 8 | 3 | 4 | 5 |
3 | 9 | 1 |
A.甲组选手得分的平均数小于乙组选手得分的平均数.
B.甲组选手得分的中位数大于乙组选手得分的平均数.
C.甲组选手得分的中位数等于乙组选手得分的中位数.
D.甲组选手得分的方差大于乙组选手得分的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 (a>0,b>0)的左焦点为F(-c,0)(c>0),过点F作圆x2+y2=的一条切线交圆于点E,交双曲线右支于点P,若,则双曲线的离心率为( )
A. B.
C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,分别是的中点,分别是的中点,将四边形,分别沿,折起,使平面平面,平面平面,如图2所示,是上一点,且.
(1)求证:;
(2)线段上是否存在点,使得?若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com