【题目】已知双曲线 (a>0,b>0)的左焦点为F(-c,0)(c>0),过点F作圆x2+y2=的一条切线交圆于点E,交双曲线右支于点P,若,则双曲线的离心率为( )
A. B.
C. D. 2
【答案】A
【解析】由=2-得-=-,即=,所以点E为线段FP的中点.设双曲线的右焦点为F1,连接PF1,则易得OE为△PFF1的中位线,所以|PF1|=2|OE|=a,F1P⊥FP,又因为点P在双曲线的右支上,所以|FP|-|F1P|=2a,所以|FP|=3a,则在Rt△PFF1中,由勾股定理易得|FP|2+|F1P|2=|F1F|2,即(3a)2+a2=(2c)2,解得双曲线的离心率e==,故选A.
点睛:本题考查双曲线的几何性质以及双曲线定义的应用,属于中档题.先根据向量等式化简判断出E点为PF中点,根据双曲线的特点知原点O为两焦点的中点,利用中位线的性质,求出的长度,以及判断出垂直于PF,通过勾股定理得到a和c的关系,求出双曲线的离心率.
科目:高中数学 来源: 题型:
【题目】如图(1),在等腰梯形中, , 是梯形的高, , ,现将梯形沿, 折起,使且,得一简单组合体如 图(2)示,已知, 分别为, 的中点.
(1)求证: 平面;
(2)若直线与平面所成角的正切值为,求平面与平面所成的锐二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数,的图象与直线可能有两个不同的交点;
②函数与函数是相等函数;
③对于指数函数与幂函数,总存在,当时,有成立;
④已知是方程的根,是方程的根,则.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的定义域;
(2)若函数有且仅有一个零点,求实数m的取值范围;
(3)任取,若不等式对任意恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①函数y=2x与函数y=log2x互为反函数;
②若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
③若,则f(x)=x2-2;
④函数y=log2(1-x)的单调减区间是(-∞,1);
其中所有正确的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C:.
若圆C的切线l在x轴和y轴上的截距相等,且截距不为零,求切线l的方程;
已知点为直线上一点,由点P向圆C引一条切线,切点为M,若,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com