精英家教网 > 高中数学 > 题目详情
17.若椭圆的短轴长,焦距,长轴长构成等差数列,则该椭圆的离心率是(  )
A.$\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{2}{5}$

分析 设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0).焦距为2c.根据椭圆的短轴长,焦距,长轴长构成等差数列,可得2×2c=2a+2b,化简再利用b2=a2-c2即可得出.

解答 解:设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0).焦距为2c.
∵椭圆的短轴长,焦距,长轴长构成等差数列,
∴2×2c=2a+2b,
化为2c=a+b,
∴(2c-a)2=b2=a2-c2
化为:5c-4a=0,
∴$\frac{c}{a}$=$\frac{4}{5}$.
故选:A.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.集合A={x|x=3m+1,m∈Z},B={x|x=3n+1,n∈Z},若a∈A,b∈B,则有(  )
A.ab∈AB.ab∈BC.ab∈A且ab∈B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为 $\overrightarrow{n}$=(1,-2)的直线方程为1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为$\overrightarrow{n}$=(-1,-1,1)的平面方程为x+y-z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC三个内角A、B、C所对的边分别为a,b,c.已知C=$\frac{π}{3}$,acosA=bcosB.
(1)求角B的大小;
(2)如图,在△ABC内取一点P,使得PB=2.过点P分别作直线BA、BC的垂线PM、PN,垂足分别是M、N.设∠PBA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{{a}^{\;}}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点P(x0,y0)到左焦点与到右焦点的距离之差为8,且到两渐近线的距离之积为$\frac{16}{5}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定圆C:x2+(y-3)2=4,定直线m:x+3y+6=0,过A(-1,0)的一条动直线l与圆C相交于P,Q两点.
(Ⅰ)如果l过圆心C,求证:l与m垂直;
(Ⅱ)当|PQ|=2$\sqrt{3}$时,求直线l的方程;
(Ⅲ)设N为圆C上的一个动点,求线段AN的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某正项等比数列a1,a2,…,a2n,各项和是其偶数项和的3倍,各项积是250,已知an+1=4,问n为何值时,数列{log2an}的前n项和有最大值?求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若a>0,b>0,则$\frac{a+b}{2}$叫做a,b的算术平均数,$\sqrt{ab}$叫做a,b的几何平均数,且$\frac{a+b}{2}$≥$\sqrt{ab}$(当且仅当a=b时等号成立).
(1)若a>0,b>0,求证:a+$\frac{1}{a}$≥2;
(2)若x>0,求2x+$\frac{1}{x}$的最小值;
(3)若0<x<1,求x(1-x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn=3n+b,求通项an

查看答案和解析>>

同步练习册答案