精英家教网 > 高中数学 > 题目详情
9.某正项等比数列a1,a2,…,a2n,各项和是其偶数项和的3倍,各项积是250,已知an+1=4,问n为何值时,数列{log2an}的前n项和有最大值?求出这个最大值.

分析 通过求和公式及题意可知$\frac{a(1-{q}^{2n})}{1-q}$=3•$\frac{aq(1-{q}^{2n})}{1-{q}^{2}}$,化简可知公比q=$\frac{1}{2}$,利用an+1=4可知an=8、anan+1=25,利用等比中项的性质可知a1•a2•…•a2n=25n,进而可知an=213-n,从而数列{log2an}是以12为首项、-1为公差的等差数列,计算即得结论.

解答 解:依题意,$\frac{a(1-{q}^{2n})}{1-q}$=3•$\frac{aq(1-{q}^{2n})}{1-{q}^{2}}$,
即$\frac{a}{1-q}$=$\frac{3aq}{1-{q}^{2}}$,解得:q=$\frac{1}{2}$,
∵an+1=4,
∴an=8,anan+1=25
∴a1•a2•…•a2n=$({a}_{n}{a}_{n+1})^{n}$
=(25n=25n
又∵各项积是250
∴n=10,
∴a11=${a}_{1}{q}^{10}$=$\frac{{a}_{1}}{{2}^{10}}$=4,
∴a1=212
则an=212•$\frac{1}{{2}^{n-1}}$=213-n
∴bn=log2an=log2213-n=13-n,
显然数列{bn}是以12为首项、-1为公差的等差数列,
令bn≥0可知n≥13,
∴数列{log2an}的前12项和与前13项和相等且最大,
其最大值为:12×12+$\frac{12×11}{2}$×(-1)=78.

点评 本题考查等比数列的性质及简单应用,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{{x}^{2}}{2}$+y2=1的上顶点为A,右焦点为F,直线l与椭圆交于B、C两点,且△ABC的垂心为F.
(1)求直线l的方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a1,a2,a3不全为零,设正数x,y满足x2+y2=2,令$\frac{{x{a_1}{a_2}+y{a_2}{a_3}}}{a_1^2+a_2^2+a_3^2}$≤M,则M的最小值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若椭圆的短轴长,焦距,长轴长构成等差数列,则该椭圆的离心率是(  )
A.$\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,点M是BC的中点,点N在边AC上,且AN=3NC,AM与BN相交于点P,求AM:PM的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x$\left\{\begin{array}{l}{|x+2|+a,x≤0}\\{lgx,x>0}\end{array}\right.$有三个不同零点,则实数a的取值范围为(  )
A.[-2,0)B.[-2,+∞)C.(-2,0)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,四凌锥P-ABCD的底面ABCD为矩形,E.F,H分别AB,CD,PD的中点,求证:平面AFH∥平面PCE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c分别为△ABC内角A、B、C的对边,a=n,b=n+1,c=n+2.n∈N,C=2A.
(1)求n的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-ax-$\frac{3}{4}$a(a∈R)的两个零点为x1、x2
(1)若f(x)<0的解集为(x1,x2),且x2-x1=2,求a的值;
(2)x1,x2能否作为某个Rt△ABC两个锐角的正弦值,说明理由.

查看答案和解析>>

同步练习册答案