分析 (1)由Sn=3n2+2n+1知,当n≥2时,an=Sn-Sn-1=6n-1,验证n=1时是否适合,即可求得{an}的通项公式;
(2)bn=an2n,易求T1=12,n>1时,Tn=6×2+11×22+17×23+…+(6n-1)×2n,利用错位相减法可求得{bn}的前n项和Tn.
解答 解:(1)∵Sn=3n2+2n+1,
∴当n≥2时,an=Sn-Sn-1=3n2+2n+1-[3(n-1)2+2(n-1)+1]=6n-1,
当n=1时,a1=6,不适合上式,
∴an=$\left\{\begin{array}{l}{6n-1,n≥2}\\{6,n=1}\end{array}\right.$…..(4分)
(2)∵bn=an2n,
∴n=1时,T1=b1=a1×2=12…..(5分)
n>1时,Tn=6×2+11×22+17×23+…+(6n-1)×2n,①
2Tn=6×22+11×23+17×24+…+(6n-7)×2n+(6n-1)2n+1,②…(9分)
②-①得:Tn=-32-6(23+24+…+2n)+(6n-1)2n+1
=16+(6n-7)×2n+1.…..(11分)
∴Tn=$\left\{\begin{array}{l}{12,n=1}\\{16+(6n-7)•{2}^{n+1},n>1}\end{array}\right.$.…(12分)
点评 本题考查数列的求和,着重考查递推关系的应用、等差数列通项公式的求法及错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com