分析 首先这个函数f(x)的图象是一个开口向上的抛物线,也就是说它的值域就是大于等于它的最小值.y=f(f(x))它的图象只能是函数f(x)上的一段,而要这两个函数的值域相同,则函数 y必须要能够取到最小值,这样问题就简单了,就只需要f(x)的最小值小于-$\frac{b}{2}$
解答 解:由于f(x)=x2+bx+2,x∈R.则当x=-$\frac{b}{2}$时,f(x)min=-$\frac{{b}^{2}}{4}$,
又函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,
则函数y必须要能够取到最小值,即-$\frac{{b}^{2}}{4}$≤-$\frac{b}{2}$,
得到b≤0或b≥2,
所以b的取值范围为{b|b≥2或b≤0}.
故答案为:{b|b≥2或b≤0}.
点评 本题考查函数值域的简单应用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{5}$ | B. | $-\frac{{2\sqrt{2}}}{5}$ | C. | $\frac{{4\sqrt{2}}}{5}$ | D. | $-\frac{{4\sqrt{2}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥0或m<-1 | B. | m>0或m<-1 | C. | m>1或m≤0 | D. | m>1或m<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com