分析 (1)当m=5时,f(x)≤12,即|x-5|+|x+4|≤10,通过讨论x的范围,从而求得不等式f(x)≤12的解集;
(2)由绝对值不等式的性质求得f(x)的最小值为|m+4|,由题意得|m+4|≥7,由此求得m的范围.
解答 解:(1)m=5时,f(x)≤10记|x-5|+|x+4|≤10,
x<-4时,-2x≤9,记x≥-$\frac{9}{2}$,故-$\frac{9}{2}$≤x<-4,
-4≤x≤5时,得:9≤10成立,故-4≤x≤5,
x>5时,得:2x≤11,即x≤$\frac{11}{2}$,故5<x≤$\frac{11}{2}$,
故不等式的解集是{x|-$\frac{9}{2}$≤x≤$\frac{11}{2}$};
(2)f(x)=|x-m|+|x+4|≥|(x-m)-(x+4)|=|m+4|,
由题意得|m+4|≥7,
则m+4≥7或m+4≤-7,简单:m≥3或m≤-11,
故m的范围是(-∞,-11]∪[3,+∞).
点评 本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①④ | C. | ①②③ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $22\sqrt{6}$ | B. | $22\sqrt{23}$ | C. | $11\sqrt{23}$ | D. | $11\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com