精英家教网 > 高中数学 > 题目详情
17.已知$\frac{cosα+sinα}{cosα-sinα}$=2,则1+3sinα•cosα-2cos2α=$\frac{1}{10}$.

分析 由条件利用同角三角函数的基本关系求得tanα=$\frac{1}{3}$,从而求得要求式子1+3sinα•cosα-2cos2α=1+$\frac{3tanα-2}{{tan}^{2}α+1}$ 的值.

解答 解:∵$\frac{cosα+sinα}{cosα+sinα}=2$=$\frac{1+tanα}{1-tanα}$,∴tanα=$\frac{1}{3}$,则1+3sinα•cosα-2cos2α=1+$\frac{3sinαcosα-{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=1+$\frac{3tanα-2}{{tan}^{2}α+1}$=1-$\frac{9}{10}$=$\frac{1}{10}$,
故答案为:$\frac{1}{10}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.计算下列各式:
(1)(0.027)${\;}^{\frac{1}{3}}$-(6$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+256${\;}^{\frac{3}{4}}$+(2$\sqrt{2}$)${\;}^{\frac{2}{3}}$+π0
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求a2+a-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-m|+|x+4|(m∈R)
(1)当m=5时,求不等式f(x)≤10的解集;
(2)若不等式f(x)≥7对任意实数x恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量X:N(2,σ2),若P(x<a)=0.32,则P(x>4-a)=(  )
A.0.32B.0.36C.0.64D.0.68

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆${(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{81}{16}$与圆${(x-sinθ)^2}+{(y-1)^2}=\frac{1}{16}(θ$为锐角)的位置关系是(  )
A.相离B.外切C.内切D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=4x2-kx-8在[5,8]上是单调增函数,则k的取值范围是(  )
A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线y=kx是曲线y=lnx的一条切线,则k的值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.国家“十三五”计划,提出创新兴国,实现中国创新,某市教育局为了提高学生的创新能力,把行动落到实处,举办一次物理、化学综合创新技能大赛,某校对其甲、乙、丙、丁四位学生的物理成绩(x)和化学成绩(y)进行回归分析,求得回归直线方程为y=1.5x-35.由于某种原因,成绩表(如表所示)中缺失了乙的物理和化学成绩.
物理成绩(x)75m8085
化学成绩(y)80n8595
综合素质
(x+y)
155160165180
(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足条件$\left\{\begin{array}{l}{y≤-|x|+2}\\{|x+2|≤2y}\end{array}\right.$,则x-y的最大值为(  )
A.-1B.-$\frac{2}{3}$C.-2D.4

查看答案和解析>>

同步练习册答案