精英家教网 > 高中数学 > 题目详情
7.已知实数x,y满足条件$\left\{\begin{array}{l}{y≤-|x|+2}\\{|x+2|≤2y}\end{array}\right.$,则x-y的最大值为(  )
A.-1B.-$\frac{2}{3}$C.-2D.4

分析 画出满足条件的平面区域,求出角点的坐标,结合图象求出z的最大值即可.

解答 解:画出满足条件的平面区域,如图示:

由$\left\{\begin{array}{l}{x+y=2}\\{x+2=2y}\end{array}\right.$,解得A($\frac{2}{3}$,$\frac{4}{3}$),
令z=x-y,则y=x-z,
平移直线y=x-z,结合图象直线y=x-z过A时,
z有最大值,z的最大值是-$\frac{2}{3}$,
故选:B.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知$\frac{cosα+sinα}{cosα-sinα}$=2,则1+3sinα•cosα-2cos2α=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{x^2}{25}$-$\frac{y^2}{11}$=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于(  )
A.$22\sqrt{6}$B.$22\sqrt{23}$C.$11\sqrt{23}$D.$11\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3},B={2,3,4},则集合A∪B的真子集的个数为(  )
A.3B.4C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosy,siny),若y=x+$\frac{4π}{3}$,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$夹角的余弦为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一个口袋中,有7个红球和8个黑球,一次从中摸出4个.
(1)求恰有一个红球的概率;
(2)在4个球均为同一颜色的条件下,求这种颜色为黑色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式$\frac{{{x^2}-3x+2}}{{{x^2}-2x-3}}$<0的解集是(  )
A.(-∞,-1)∪(1,2)∪(3,+∞)B.(-1,1)∪(2,3)C.(-1,1)∪(1,2)D.(1,2)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,命题q:5-2m>1,若p为假命题且q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.棱长为2个单位的正方体ABCD-A1B1C1D1中,以DA,DC,DD1分为x,y,z 坐标轴,则A1D1的中点E的坐标为(  )
A.(1,1,2)B.(1,0,2)C.(2,1,0)D.(2,1,1)

查看答案和解析>>

同步练习册答案