精英家教网 > 高中数学 > 题目详情
12.圆${(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{81}{16}$与圆${(x-sinθ)^2}+{(y-1)^2}=\frac{1}{16}(θ$为锐角)的位置关系是(  )
A.相离B.外切C.内切D.相交

分析 分别求出两圆的圆心和半径,求得圆心距与半径和和之差的关系,即可判断位置关系.

解答 解:圆${(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{81}{16}$的圆心为(-$\frac{1}{2}$,-1),半径为$\frac{9}{4}$;
圆${(x-sinθ)^2}+{(y-1)^2}=\frac{1}{16}(θ$为锐角)的圆心为(sinθ,1),半径为$\frac{1}{4}$.
两圆的距离为$\sqrt{(sinθ+\frac{1}{2})^{2}+4}$∈($\frac{\sqrt{17}}{2}$,$\frac{5}{2}$),
半径之和为$\frac{5}{2}$,半径之差为2.
则圆心距介于半径之差和半径之和.
即有两圆的位置关系为相交.
故选:D.

点评 本题考查两圆的位置关系的判断,注意运用两点的距离公式和正弦函数的单调性,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在各项均为正数的等比数列{an}中,a2,a4+2,a5成等差数列,a1=2,则an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知不等式组$\left\{\begin{array}{l}x-y+k≥0\\ 3x-y-6≤0\\ x+y+6≥0\end{array}\right.$表示的平面区域恰好被圆C:(x-3)2+(y-3)2=r2所覆盖,则实数k=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC满足下列条件:
①b=3,c=4,B=30°;
②b=12,c=9,C=60°;
③$b=3\sqrt{3}$,c=6,B=60°;
④a=5,b=8,A=30°.
其中有两个解的是(  )
A.①②B.①④C.①②③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦点分别是F1、F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0 ) (x0>0,y0>0)满足$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{P{F}_{1}}$=$\frac{{\overrightarrow{{F_2F}_1}•\overrightarrow{{MF}_1}}}{{{F_2F}_1}}$,则S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\frac{cosα+sinα}{cosα-sinα}$=2,则1+3sinα•cosα-2cos2α=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=x-\sqrt{1-2x}$(  )
A.有最小值$\frac{1}{2}$,无最大值B.有最大值$\frac{1}{2}$,无最小值
C.有最小值$\frac{1}{2}$,有最大值2D.无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列四个命题:
①集合{x||x|<0}为空集是必然事件;
②y=f(x)是奇函数,则f(0)=0是随机事件;
③若loga(x-1)>0,则x>1是必然事件;
④对顶角不相等是不可能事件.
其中正确命题是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosy,siny),若y=x+$\frac{4π}{3}$,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$夹角的余弦为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案