精英家教网 > 高中数学 > 题目详情

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

【答案】A
【解析】解:设AB=1,则AA1=2,分别以 的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,
如下图所示:

则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),
=(1,1,0), =(1,0,﹣2), =(1,0,0),
=(x,y,z)为平面BDC1的一个法向量,则 ,即 ,取 =(2,﹣2,1),
设CD与平面BDC1所成角为θ,则sinθ=| |=
故选A.
【考点精析】通过灵活运用空间角的异面直线所成的角和用空间向量求直线与平面的夹角,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则;设直线的方向向量为,平面的法向量为,直线与平面所成的角为的夹角为, 则的余角或的补角的余角.即有:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

(2)已知,经过原点,且斜率为正数的直线与圆交于两点.

(ⅰ)求证: 为定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数f(x),若存在闭区间[ab]D和常数c,使得对任意x1∈[ab],都有f(x1)=c,且对任意x2D,当x2[ab]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列结论:

①“平顶型”函数在定义域内有最大值;

②函数f(x)=x-|x-2|为R上的“平顶型”函数;

③函数f(x)=sin x-|sin x|为R上的“平顶型”函数;

④当t时,函数f(x)=是区间[0,+∞)上的“平顶型”函数.

其中正确的结论是________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,
(1)证明:A1C⊥平面BB1D1D;

(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若数列的前n项和,求数列的通项公式.

2)若数列的前n项和,证明为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(2x+φ)(|φ|< )向左平移 个单位后是奇函数,则函数f(x)在[0, ]上的最小值为

查看答案和解析>>

同步练习册答案