精英家教网 > 高中数学 > 题目详情

【题目】已知函数,实数是常数.

(Ⅰ)若=2,函数图像上是否存在两条互相垂直的切线,并说明理由.

(Ⅱ)若上有零点,求实数的取值范围.

【答案】(1)函数图像上不存在两条互相垂直的直线(2)的取值范围是.

【解析】试题分析】(1)借助导数的几何意义,建立不等式进行分析推证;(2)先将问题进行等价转化与化归,再构造方程进行分析探求

(Ⅰ)

所以,对于任意,均有

故函数图像上不存在两条互相垂直的直线

(Ⅱ)解:因为上有零点,

所以在区间上的最小值小于等于0.

因为, 令,得.

(1)当时,即时,

因为成立,所以上单调递增,

此时上的最小值为

所以

解得,所以此种情形不成立,

(2)当,即时,

①若, 则成立,所以上单调递增,

此时上的最小值为所以

解得,所以

②若

,则成立, 成立.

上单调递减,在上单调递增,此时上的最小值为所以有,解得

时,注意到,而

此时结论成立.

综上, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2mx+m2+4m﹣2.
(1)若函数f(x)在区间[0,1]上是单调递减函数,求实数m的取值范围;
(2)若函数f(x)在区间[0,1]上有最小值﹣3,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为AB两点的极坐标分别为.

()求圆C的普通方程和直线的直角坐标方程;

()P是圆C上任一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个的矩形),被截取一角(即), ,平面平面 .

(1)证明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,则m,n所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2)当直线l的倾斜角为45°时,求弦AB的长.

查看答案和解析>>

同步练习册答案