精英家教网 > 高中数学 > 题目详情
6.已知f(x)=$\left\{\begin{array}{l}{1,x∈[0,1]}\\{x-3,x∉[0,1]}\end{array}\right.$,若f(f(x))=1成立,求x的取值范围.

分析 根据函数的形式进行讨论,此过程分两段进行,解方程即可得到符合条件的自变量的范围.

解答 解:①若x∈[0,1],则f(x)=1∈[0,1],故f(1)=1成立.即x∈[0,1]成立;
②若x∉[0,1],f(x)=x-3,则f(x-3)=1成立
(i)若x-3∈[0,1],f(x-3)=1成立,此时x∈[3,4];
(ii)若x-3∉[0,1],则x-3-3=1,解得x=7.
综上,x的取值范围为[0,1]∪[3,4]∪{7}.

点评 本题考查解分段函数有关的方程,此类方程的求解要分段来求,求解时要注意其对应关系,免得出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,圆O的两条弦AB与CD相交于点E,圆O的切线CF交AB的延长线于F点,且AE:EB=3:2,EF=CF,CE=$\sqrt{2}$,ED=3$\sqrt{2}$,则CF的长为(  )
A.6B.5C.2$\sqrt{6}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=ex-e-x+1(e为自然对数的底数).若f(a)+f(a-2)<2,则实数a的取值范围是(  )
A.a<1B.a<2C.a>1D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}}&{(-1≤x≤1)}\\{\frac{1}{2}x}&{(1<x≤4)}\end{array}}$.
(1)用直尺或三角板画出y=f(x)的图象;
(2)求f(x)的最小值和最大值以及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作出函数y=|x|+|2x+4|的图象,并根据图象说明实数m分别为何值时,直线y=m与函数y=|x|+|2x+4|的图象分别有两个交点,有一个交点,没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(sinx+$\sqrt{3}$cosx,-$\frac{3}{2}$),g(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)当x∈[0,π]时,求函数g(x)的单调递增区间;
(2)将函数g(x)的图象向左平移$\frac{π}{6}$个单位,再横坐标伸长为原来的2倍,纵坐标伸长为原来的4倍,向下平移两个单位后,得到f(x)的图象,求f(x)的最大值,及取得最大值时x的集合;
(3)若a,b,c是△ABC的内角A,B,C的对边,对定义域内任意x,有f(x)≤f(A),若a=$\sqrt{3}$.求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin(2x+$\frac{π}{3}$)+tan$\frac{5π}{6}$•cos2x.
(Ⅰ)求f(x)的最小正周期及其图象的对称轴方程;
(Ⅱ)求函数f(x)在区间(0,$\frac{π}{2}$)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(1))的值为(  )
A.1B.-1C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}中,前n项和为Sn,a1=1,{bn}为等比数列且各项均为正数,b1=1,且满足:b2+S2=7,b3+S3=22.
(Ⅰ)求an与bn
(Ⅱ)记cn=$\frac{{2}^{n-1}•{a}_{n}}{{b}_{n}}$,求{cn}的前n项和Tn
(Ⅲ)若不等式(-1)n•m-Tn<$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案