精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{m}$、$\overrightarrow{n}$均为单位向量,且向量$\overrightarrow{m}$与$\overrightarrow{n}$反向,则$\overrightarrow{m}$•$\overrightarrow{n}$等于(  )
A.-1B.0C.1D.±1

分析 根据条件便可得到$|\overrightarrow{a}|=1,|\overrightarrow{b}|=1$,并且$\overrightarrow{m}=-\overrightarrow{n}$,从而可得到$\overrightarrow{m}•\overrightarrow{n}=-{\overrightarrow{n}}^{2}=-1$,从而得出正确选项.

解答 解:根据题意,$|\overrightarrow{m}|=|\overrightarrow{n}|=1$,且$\overrightarrow{m}=-\overrightarrow{n}$;
∴$\overrightarrow{m}•\overrightarrow{n}=-{\overrightarrow{n}}^{2}=-1$.
故选A.

点评 考查单位向量的概念,相反向量的概念,以及数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求首项是2,公差为3的等差数列的前2008项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有175个七位数符合条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sinx-cosx.
(1)求f(x)的最小正周期;
(2)若f(x)=$\frac{6}{5}$,x∈($\frac{π}{6}$,$\frac{2π}{3}$),求sinx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A,B,C所对的边分别为a,b,c下列结论:
①若a2>b2+c2,则△ABC为钝角三角形;
②若a2=b2+c2+bc,则A为60°;
③若a2+b2>c2,则△ABC为锐角三角形;
④若A:B:C=1:2:3,则:a:b:c=1:$\sqrt{3}$:2.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$•$\overrightarrow{b}$=4,若$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为2,且$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为1,则|3$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.2$\sqrt{31}$B.2$\sqrt{30}$C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.P为AC的动点,根据图乙解答下列各题:

(1)求三棱锥D-ABC的体积.
(2)求证:不论点P在何位置,都有DE⊥BP;
(3)在BD弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点M是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,F是其右焦点,P为线段MF的中点,若|OM|=|OF|(0为坐标原点)且|OP|=$\frac{1}{2}$a,则双曲线的离心率为(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和为Sn,满足nSn+1-(n+1)Sn=2n2+2n(n∈N*),a1=3,则数列{an}的通项an=(  )
A.4n-1B.2n+1C.3nD.n+2

查看答案和解析>>

同步练习册答案