精英家教网 > 高中数学 > 题目详情
12.已知角A是△ABC的一个内角,且$tan\frac{A}{2}=\frac{{\sqrt{5}}}{2}$,则△ABC的形状是(  )
A.直角三角形B.锐角三角形
C.钝角三角形D.无法判断△ABC的形状

分析 利用倍角公式得到tanA=$\frac{2tan\frac{A}{2}}{1-ta{n}^{2}\frac{A}{2}}$=$\frac{2×\frac{\sqrt{5}}{2}}{1-(\frac{\sqrt{5}}{2})^{2}}$=-4$\sqrt{5}$<0.由此推知三角形ABC的形状.

解答 解:∵$tan\frac{A}{2}=\frac{{\sqrt{5}}}{2}$,
∴tanA=$\frac{2tan\frac{A}{2}}{1-ta{n}^{2}\frac{A}{2}}$=$\frac{2×\frac{\sqrt{5}}{2}}{1-(\frac{\sqrt{5}}{2})^{2}}$=-4$\sqrt{5}$<0.
又角A是△ABC的一个内角,
∴90°<A<180°,
∴△ABC是钝角三角形.
故选:C.

点评 本题考查三角形形状的判断,考查倍角公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图给出了一个程序框图,若要使输入的x值与输出的y值相等,则这样的x值有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线$y=\frac{1}{2}x+b$是曲线y=lnx的一条切线,则实数b的值为ln2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.四名选手 A、B、C、D 参加射击、抛球、走独木桥三项比赛,每个选手在各项比赛中获得合格、不合格机会相等,比赛结束,评委们会根据选手表现给每位选手评定比赛成绩,根据比赛成绩,对前两名进行奖励.
(1)选手 D 至少获得两个合格的概率;
(2)选手 C、D 只有一人得到奖励的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列不等式:
(1)$\frac{x-1}{x+3}$≤2
(2)$\frac{{x}^{2}+2x-3}{-{x}^{2}+x+6}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知角α为三角形的内角,且tanα=2
(1)求$\frac{sinα-4cosα}{5sinα+2cosα}$的值;    
(2)求sin2α+2sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是计算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{31}$的值的程序框图,则图中①②处应填写的语句分别是(  )
①①
A.n=n+2,i>16?B.n=n+2,i≥16?C.n=n+1,i>16?D.n=n+1,i≥16?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若{an}为等差数列,{bn}为等比数列,设cn=anbn,则我们经常用“错位相减法”求数列{cn}的前n项和Sn,记Sn=f(n).在这个过程中许多同学常将结果算错,为了减少出错,我们可代入n=1和n=2进行检验:计算S1=f(1),检验是否与a1b1相等;再计算S2=f(2),检验是否与a1b1+a2b2相等,如果两处中有一处不等,则说明计算错误.某次数学考试对“错位相减法”进行了考查,现随机抽取100名学生,对他们是否进行检验以及答案是否正确的情况进行了统计,得到数据如表所示:
答案正确答案错误合计
检验35
未检验40
合计50100
(1)请完成上表;
(2)是否有95%的把握认为检验计算结果可以有效地避免计算错误?
(3)在调查的100名学生中,用分层抽样的方法从未检验计算结果的学生中抽取8人,进一步调查他们不检验的原因,现从这8人中任取3人,记其中答案正确的是学生人数为随机变量X,求X的分布列和数学期望.
附:下面的临界值表供参考
P(K2≥k00.100.050.0250.010
K02.7063.8415.0246.635
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的i值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案