精英家教网 > 高中数学 > 题目详情
12.四名选手 A、B、C、D 参加射击、抛球、走独木桥三项比赛,每个选手在各项比赛中获得合格、不合格机会相等,比赛结束,评委们会根据选手表现给每位选手评定比赛成绩,根据比赛成绩,对前两名进行奖励.
(1)选手 D 至少获得两个合格的概率;
(2)选手 C、D 只有一人得到奖励的概率.

分析 (1)利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出选手D 至少获得两个合格的概率.
(2)利用列举法求出所有获得奖励的可能结果有6种,选手C、D 只有一人得到奖励包含的情况有4种,由此能求出选手C、D 只有一人得到奖励的概率.

解答 解:(1)∵四名选手 A、B、C、D 参加射击、抛球、走独木桥三项比赛,
每个选手在各项比赛中获得合格、不合格机会相等,
∴选手 D 至少获得两个合格的概率:
p=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2})+{C}_{3}^{3}(\frac{1}{2})^{3}$=$\frac{1}{2}$.
(2)所有获得奖励的可能结果有:
(AB),(AC),(AD),(BC),(BD),(CD),共6种,
选手C、D 只有一人得到奖励包含的情况有:
(AC),(AD),(BC),(BD),有4种,
∴选手 C、D 只有一人得到奖励的概率p=$\frac{4}{6}=\frac{2}{3}$.

点评 本题考查古典概型的计算,涉及列举法的应用,解题的关键是正确列举,分析得到事件的情况数目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知不等式ax2+bx+c>0的解集为{x|2<x<4},则不等式cx2+bx+a>0的解集为(  )
A.{x|x>$\frac{1}{2}$}B.{x|x<$\frac{1}{4}$}C.{x|$\frac{1}{4}$<x<$\frac{1}{2}$}D.{x|x>$\frac{1}{2}$或x<$\frac{1}{4}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有4张卡片,上面分别写有0,1,2,3.若从这4张卡片中随机取出2张组成一个两位数,则此数为偶数的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.与向量$\overrightarrow a$=(12,5)垂直的单位向量为(  )
A.($\frac{12}{13}$,$\frac{5}{13}$)B.(-$\frac{12}{13}$,-$\frac{5}{13}$)
C.($-\frac{5}{13}$,$\frac{12}{13}$)或($\frac{5}{13}$,-$\frac{12}{13}$)D.(±$\frac{12}{13}$,$\frac{5}{13}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.3男3女共6名同学从左至右排成一排合影,要求左端排男同学,右端排女同学,且女同学至多有2人排在一起,则不同的排法种数为(  )
A.144B.160C.180D.240

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=tan(3x-$\frac{π}{4}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角A是△ABC的一个内角,且$tan\frac{A}{2}=\frac{{\sqrt{5}}}{2}$,则△ABC的形状是(  )
A.直角三角形B.锐角三角形
C.钝角三角形D.无法判断△ABC的形状

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax2+8x+b(a,b为互不相等的正整数),方程f(x)=0的两个实根为x1,x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(-1)的最大值与最小值分别为M,m,则M+m的值为50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3-3x2+1在x0处取得极小值,则x0=2.

查看答案和解析>>

同步练习册答案