分析 根据题意画出图象,延长BC、过A做AE⊥BC、垂足为E,根据平行线的性质和勾股定理依次求出AE、CE、BC、BD,由条件求出AD的长.
解答
解:如图所示:延长BC,过A做AE⊥BC,垂足为E,
∵CD⊥BC,∴CD∥AE,
∵CD=5,BD=2AD,∴$\frac{CD}{AE}=\frac{2}{3}$,解得AE=$\frac{15}{2}$,
在RT△ACE,CE=$\sqrt{A{C}^{2}-A{E}^{2}}$=$\sqrt{25×3-\frac{1{5}^{2}}{4}}$=$\frac{5\sqrt{3}}{2}$,
由$\frac{BC}{CE}=2$得BC=2CE=5$\sqrt{3}$,
在RT△BCD中,BD=$\sqrt{B{C}^{2}+C{D}^{2}}$=$\sqrt{25×3+25}$=10,
则AD=5,
故答案为:5.
点评 本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | π | C. | $\frac{4π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是正的 | |
| B. | 一定是负的 | |
| C. | 当a>b>0时是正的,当0>a>b时是负的 | |
| D. | 正、负都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com