精英家教网 > 高中数学 > 题目详情

【题目】(1)某圆锥的侧面展开图为圆心角为,面积为的扇形,求该圆锥的表面积和体积.

(2)已知直三棱柱的底面是边长为的正三角形,且该三棱柱的外接球的表面积为,求该三棱柱的体积.

【答案】(1); (2) .

【解析】

(1)设圆锥的底面半径、母线长分别为,利用扇形的面积公式求得,利用圆锥的表面积和体积公式,即可求解;

(2)设球半径为,上,下底面中心设为,由题意,外接球心为的中点,根据三棱柱的外接球的表面积,列出方程,求得棱柱的高,利用体积公式,即可求解.

(1)设圆锥的底面半径、母线长分别为

,解得

所以圆锥的高为,得表面积是,体积是

(2)设球半径为R,上,下底面中心设为M,N,由题意,外接球心为MN的中点,

设为O,则OA=R,由4πR2=12π,得R=OA=,又易得AM=

由勾股定理可知,OM=1,所以MN=2,即棱柱的高h=2,

所以该三棱柱的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20131月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市201311日至130日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:

1 空气质量指数AQI分组表

AQI指数M

0~50

51~100

101~150

151~200

201~300

>300

级别

状况

轻度污染

中度污染

重度污染

严重污染

2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市201311日至130日的AQI指数频数分布表.

2 AQI指数M与当天的空气水平可见度y(km)的情况

AQI指数M

900

700

300

100

空气水平可见度y(km)

0.5

3.5

6.5

9.5

3 北京市201311日至130AQI指数频数分布表

AQI指数M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

频数

3

6

12

6

3

(1)设x,根据表2的数据,求出y关于x的线性回归方程.

(参考公式:.)

(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.

①估计小王的洗车店在20131月份平均每天的收入;

②从AQI指数在[0,200)[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 =
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示.为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有米.若行车道总宽度米.

(1)计算车辆通过隧道时的限制高度;

(2)现有一辆载重汽车宽米,高米,试判断该车能否安全通过隧道?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1:y=cosx,C2:y=sin(2x+ ),则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏
B.3盏
C.5盏
D.9盏

查看答案和解析>>

同步练习册答案