精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.

【答案】
(1)证明:连接A1C,交AC1于点E,

则点E是A1C及AC1的中点.

连接DE,则DE∥A1B.

因为DE平面ADC1

所以A1B∥平面ADC1


(2)解:建立如图所示空间直角坐标系A﹣xyz.

则A(0,0,0),B(1,0,0),C(0,1,0),

C1(0,1,2)D( ,0),

=( ,0), =(0,1,2).

设平面ADC1的法向量 =(x,y,z),

,不妨取 =(2,﹣2,1).

平面ABA1的一个法向量 = =(0,1,0).

|cos< >|=| |=

设平面ADC1与ABA1所成二面角的平面角为θ,

sinθ= =

∴平面ADC1与ABA1所成二面角的正弦值是


【解析】(1)连接A1C,交AC1于点E,连接DE,则DE∥A1B,由此能证明A1B∥平面ADC1 . (2)建立空间直角坐标系A﹣xyz.利用向量法能求出平面ADC1与ABA1所成二面角的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】A. 选修4-1:几何证明选讲

如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3个人坐在一排6个座位上,问:
(1)3个人都相邻的坐法有多少种?
(2)空位都不相邻的坐法有多少种?
(3)空位至少有2个相邻的坐法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是偶函数,且f(x+ )=f( ﹣x),当﹣ ≤x≤0时,f(x)=( x﹣1,记an=f( ),n∈N+ , 则a2046的值为( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差为0的等差数列{an}满足a1=1,且a1 , a3﹣2,a9成等比数列.
(1)求数列{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 并求使得Sn + 成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求的值;

(Ⅱ)当时,求证:存在实数使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , 对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,长郡中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占,统计成绩后,得到如下的列联表:

分数大于等于120分

分数不足120分

合计

周做题时间不少于15小时

4

19

周做题时间不足15小时

合计

45

(1)请完成上面的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;

(2)(ⅰ)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是,求的分布列(概率用组合数算式表示);

(ⅱ)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.

附:

查看答案和解析>>

同步练习册答案