精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,点在椭圆内部,点在椭圆上,则以下说法正确的是(

A.的最小值为

B.椭圆的短轴长可能为2

C.椭圆的离心率的取值范围为

D.,则椭圆的长轴长为

【答案】ACD

【解析】

A. ,利用椭圆的定义转化为求解;

B.假设椭圆的短轴长为2,则,与点在椭圆的内部验证;

C. 根据点在椭圆内部,得到,又,解得,再由求解;

D. 根据,得到为线段的中点,求得坐标,代入椭圆方程求解.

A. 因为,所以,所以,当,三点共线时,取等号,故正确;

B.若椭圆的短轴长为2,则,所以椭圆方程为,则点在椭圆外,故错误;

C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以,所以椭圆的离心率的取值范围为,故正确;

D. ,则为线段的中点,所以,所以,又,即,解得,所以,所以椭圆的长轴长为,故正确.

故选:ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《周髀算经》是中国古代重要的数学著作,其记载的日月历法曰:阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,.生数皆终,万物复苏,天以更元作纪历,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90100),其余19人的年龄依次相差一岁,则年长者的年龄为( )

A.94B.95C.96D.98

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,ABCD为菱形,平面ABCD,连接ACBD交于点OE是棱PC上的动点,连接DE.

1)求证:平面平面

2)当面积的最小值是4时,求此时点E到底面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试在①,②,③三个条件中选两个条件补充在下面的横线处,使得ABCD成立,请说明理由,并在此条件下进一步解答该题:

如图,在四棱锥中,,底ABCD为菱形,若__________,且,异面直线PBCD所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,点上一点,且线段的中点坐标为.

1)求抛物线的标准方程;

2)若为抛物线上的两个动点(异于点),且,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在等腰直角中,斜边D的中点,将沿折叠得到如图(2)所示的三棱锥,若三棱锥的外接球的半径为,则_________.

图(1 图(2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面ABB1A1为菱形,DAB的中点,为等腰三角形,∠ACB,∠ABB1,且ABB1C.

1)证明:CD⊥平面ABB1A1

2)求CD与平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)若交于两点,求的值.

查看答案和解析>>

同步练习册答案