精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中点在原点,焦点在轴上,离心率,以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为.

(1)求椭圆的方程;

(2)过原点的两条直线 ,交椭圆 四点,若,求四边形的面积.

【答案】(1);(2).

【解析】试题分析:1依题意,根据椭圆的几何意义,求得的值,即可得到椭圆的方程;

(2)由题意设直线的方程与椭圆的方程联立方程组,得出,再由,求出的关系式,然后把四边形的面积转化为的面积,结合的关系式,代入便可得到结果.

试题解析:

(1)依题意,设椭圆的方程为),焦距为

由题设条件可知, ,即

解得 (经检验不合题意,舍去).

故椭圆的方程为.

(2)不妨设 位于轴的上方,则直线的斜率一定存在,设直线的方程为 ,联立,得整理得,则①,②.

得, ,将①②代入得.

因为原点到直线的距离 ,所以

故四边形的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在梯形ABCD中,ADBCADDCBC=2AD,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCDMAF1的中点,如图2.

(1)求证:BE1DC

(2)求证:DM∥平面BCE1

(3)判断直线CDME1的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,则的最大值

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x-lnx)+,a∈R.

(I)讨论f(x)的单调性;

(II)当a=1时,证明f(x)>f’(x)+对于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲这都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:

学科

语文

数学

英语

理综

文综

问卷份数

用分层抽样的方法从这一天的所有问卷中抽取份进行统计,结果如下表:

满意

一般

不满意

语文

数学

1

英语

理综

文综

(1)估计这次讲座活动的总体满意率;

(2)求听数学讲座的甲某的调查问卷被选中的概率;

(3)若想从调查问卷被选中且填写不满意的人中再随机选出 人进行家访,求这 人中选择的是理综讲座的人数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中 为非零常数.

(1)若 ,求证: 为等比数列,并求数列的通项公式;

(2)若数列是公差不等于零的等差数列.

①求实数 的值;

②数列的前项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,底面为等腰直角三角形, , , 若别是棱的中点,则下列四个命题:

②三棱锥的外接球的表面积为

③三棱锥的体积为

④直线与平面所成角为

其中正确的命题有__________.(把所有正确命题的序号填在答题卡上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形 在线段 平面.

(1)求证:平面平面

(2)当四棱锥的体积最大时求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 ,过作垂直于轴的直线交抛物线两点,且的面积为.

(1)求抛物线的方程和圆的方程;

(2)若直线均过坐标原点,且互相垂直, 交抛物线,交圆 交抛物线,交圆,求的面积比的最小值.

查看答案和解析>>

同步练习册答案