精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=( 的单调递减区间为

【答案】[1,+∞)
【解析】解:设t=x2﹣2x,

则y=( t,为减函数,

要求函数f(x)=( 的单调递减区间,

则等价为求函数t=x2﹣2x的递增区间,

∵函数t=x2﹣2x的递增区间为[1,+∞),

∴函数f(x)=( 的单调递减区间为[1,+∞),

所以答案是:[1,+∞).

【考点精析】本题主要考查了函数的单调性和复合函数单调性的判断方法的相关知识点,需要掌握注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种;复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x|x﹣a|.
(1)讨论f(x)的奇偶性;
(2)当0≤x≤1时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)讨论函数f(x)的定义域;
(2)当a>1时,解关于x的不等式:f(x)<f(1);
(3)当a=2时,不等式f(x)﹣log2(1+2x)>m对任意实数x∈[1,3]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与椭圆 交于两点A(x1 , y1),B(x2 , y2),椭圆上的点到下焦点距离的最大值、最小值分别为 ,向量 =(ax1 , by1), =(ax2 , by2),且 ,O为坐标原点. (Ⅰ)求椭圆的方程;
(Ⅱ)判断△AOB的面积是否为定值,如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知经过点A(﹣4,0)的动直线l与抛物线G:x2=2py(p>0)相交于B、C,当直线l的斜率是 时, . (Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,
(1)求a的值
(2)比较f(2)与f(b2+2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+1)lnx﹣a(x﹣1).
(1)当a=3时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)设 ,且a>1,讨论函数g(x)的单调性和极值点.

查看答案和解析>>

同步练习册答案