精英家教网 > 高中数学 > 题目详情
已知f(x)=-x2,g(x)=2x-m,若对任意x1∈[-1,3],总存在x2∈[0,2],使f(x1)≥g(x2)成立,则实数m的取值范围是
 
考点:二次函数的性质
专题:函数的性质及应用
分析:条件对任意x1∈[-1,3],总存在x2∈[0,2],使f(x1)≥g(x2)成立等价为上f(x)min≥g(x)min即可.
解答: 解:∵x1∈[-1,3],∴-9≤f(x1)≤0,
∵x2∈[0,2],∴1-m≤g(x2)≤4-m,
若对任意x1∈[-1,3],总存在x2∈[0,2],使f(x1)≥g(x2)成立,
则f(x)min≥g(x)min即可,
即-9≥1-m,
解得m≥10,
故答案为:[10,+∞)
点评:本题主要考查函数值的大小比较以及不等式恒成立问题,将条件转化为求函数最值之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用4种不同的颜色涂入如图四个小矩形中,要求相邻矩形的涂色不得相同,则不同的涂色方法共有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=2f(
1
x
),当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]内,函数g(x)=f(x)-ax(a>0)恰有三个零点,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=3x+5,x∈{3,6}的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x+3x-6的零点所在区间是(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义x∈[-1,1]在偶函数f(x)满足:当x∈[0,1]时,f(x)=x+2
2-x
,函数g(x)=ax+5-2a(a>0),
(1)求函数f(x)在x∈[-1,1]上的解析式:
(2)若对于任意x1,x2∈[-1,1],都有g(x2)>f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρsin(θ-
π
4
)=
2
2
与圆ρ=2cosθ的位置关系是(  )
A、相交B、相离C、内切D、外切

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2-2(a-1)x+3,求f(x)在[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x>0时,函数的解析式为f(x)=
2
x
-1,求函数f(x)在R上的解析式.

查看答案和解析>>

同步练习册答案