【题目】已知定圆![]()
,定直线![]()
,过
的一条动直线
与直线相交于
,与圆
相交于
,
两点,
(1)当
与
垂直时,求出
点的坐标,并证明:
过圆心
;
(2)当
时,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】已知|a|=4,|b|=8,a与b的夹角是120°.
(1) 计算:① |a+b|,② |4a-2b|;
(2) 当k为何值时,(a+2b)⊥(ka-b)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
A. 若l⊥m,mα,则l⊥α
B. 若l⊥α,l∥m,则m⊥α
C. 若l∥α,mα,则l∥m
D. 若l∥α,m∥α,则l∥m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者10元钱;若摸得非同一颜色的3个球。摸球者付给摊主2元钱。
(1)摸出的3个球中至少有1个白球的概率是多少?
(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列
的前n项和为
,满足
,且
,公比大于1的等比数列
满足
,
.
(1)求证数列
是等差数列,并求其通项公式;
(2)若
,求数列
的前n项和
;
(3)在(2)的条件下,若
对一切正整数n恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
为矩形,直线
平面
,
,
,
,点
在棱
上.
![]()
(1)求证:
;
(2)若
是
的中点,求异面直线
与
所成角的余弦值;
(3)若![]()
![]()
,求二面角
的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com