精英家教网 > 高中数学 > 题目详情

【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于两点,

1垂直时,求出点的坐标,并证明:过圆心

2时,求直线的方程.

【答案】1 2.

【解析】

试题分析:1根据已知,容易写出直线的方程为.将圆心代入方程易知过圆心2的一条动直线.应当分为斜率存在和不存在两种情况当直线轴垂直时,进行验证.当直线与轴不垂直时,设直线的方程为,因为弦长,利用垂径定理,则圆心到弦的距离.从而计算得出斜率来得出直线的方程.

试题解析:1直线的方程为.将圆心代入方程易知过圆心

联立 所以.

2 当直线轴垂直时,易知符合题意; 当直线与轴不垂直时,设直线的方程为,由于,由,解得

故直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{}的前n项和 (n为正整数)。

1,求证数列{}是等差数列,并求数列{}的通项公式;

(2)试比较的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|a|4|b|8ab的夹角是120°.

(1) 计算:① |ab|,② |4a2b|


(2) 当k为何值时,(a2b)⊥(kab)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设lm是两条不同的直线,α是一个平面,则下列命题正确的是( )

A. l⊥m,则l⊥α

B. l⊥αl∥m,则m⊥α

C. l∥α,则l∥m

D. l∥αm∥α,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者10元钱;若摸得非同一颜色的3个球。摸球者付给摊主2元钱。

(1)摸出的3个球中至少有1个白球的概率是多少?

(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前n项和为满足,公比大于1的等比数列满足 .

1求证数列是等差数列,并求其通项公式

2求数列的前n项和

3)在(2)的条件下,若对一切正整数n恒成立求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.

(1)求证:

(2)若的中点,求异面直线所成角的余弦值;

(3)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案