14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÖ±ÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãPÔÚC1ÉÏ£¬µãQÔÚC2ÉÏ£¬Çó|PQ|µÄ×îСֵ¼°¶ÔÓ¦µÄµãPµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨¢ñ£©ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥¦Á£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯Îª¦Ñcos¦È+¦Ñsin¦È=4£¬ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÉèµãPµ½Ö±ÏßC2µÄ¾àÀëΪd£¨a£©£¬Ôò|PQ|µÄ×îСֵ¼´Îªd£¨a£©µÄ×îСֵ£¬ÓÉ´ËÄÜÇó³öµ±PµÄ×ø±êΪ£¨$\frac{3}{2}£¬-\frac{1}{2}$£©Ê±£¬|PQ|È¡×îСֵ$\sqrt{2}$£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
ÏûÈ¥¦Á£¬µÃÇúÏßC1µÄÆÕͨ·½³ÌΪx2+3y2-3=0£¬¡­£¨2·Ö£©
ÓÖ$¦Ñcos£¨¦È-\frac{¦Ð}{4}£©=2\sqrt{2}$£¬ËùÒÔ¦Ñcos¦È+¦Ñsin¦È=4£®
¡ßÖ±ÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
¼´¦Ñcos¦È+¦Ñsin¦È=4£¬
ÓÖx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àÖ±ÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®¡­£¨4·Ö£©
£¨¢ò£©ÉèµãPµ½Ö±ÏßC2µÄ¾àÀëΪd£¨a£©£¬¡­£¨5·Ö£©
Ôòd£¨a£©=$\frac{|\sqrt{3}cos¦Á+sin¦Á-4|}{\sqrt{2}}$=$\frac{|2cos£¨¦Á-\frac{¦Ð}{6}£©-4|}{\sqrt{2}}$£¬¡­£¨7·Ö£©
|PQ|µÄ×îСֵ¼´Îªd£¨a£©µÄ×îСֵ£¬¡­£¨8·Ö£©
µ±cos£¨$¦Á-\frac{¦Ð}{6}$£©=1£¬¼´$¦Á=\frac{¦Ð}{6}+2k¦Ð$£¬k¡ÊZʱ£¬$d£¨a£©_{min}=\sqrt{2}$£¬
´ËʱPµÄ×ø±êΪ£¨$\frac{3}{2}£¬\frac{1}{2}$£©£®
¡àµ±PµÄ×ø±êΪ£¨$\frac{3}{2}£¬\frac{1}{2}$£©Ê±£¬|PQ|È¡×îСֵ$\sqrt{2}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³ÌºÍÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵Ä×îСֵ¼°¶ÔÓ¦µÄµãµÄ×ø±êµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªx=3ÊǺ¯Êýy=alnx+x2-10xµÄÒ»¸ö¼«Öµµã£¬ÔòʵÊýa=12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=a-$\frac{2}{{2}^{x}+1}$£®
£¨1£©ÇóÖ¤£º²»ÂÛaΪºÎʵÊý£¬f£¨x£©Ò»¶¨ÎªÔöº¯Êý£»
£¨2£©È·¶¨aµÄÖµ£¬Ê¹f£¨x£©ÎªÆæº¯Êý£¬²¢Çó´Ëʱf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Æ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬µãA£¨2£¬0£©ÔÚÇúÏßC£º$\left\{\begin{array}{l}{x=acos¦Õ}\\{y=sin¦Õ}\end{array}$£¨¦ÕΪ²ÎÊý£¬a£¾0£©ÉÏ£®ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÈôµãM£¬NµÄ¼«×ø±ê·Ö±ðΪ£¨¦Ñ1£¬¦È£©£¬£¨¦Ñ2£¬¦È+$\frac{¦Ð}{2}$£©£¬ÇÒµãM£¬N¶¼ÔÚÇúÏßCÉÏ£¬Ôò$\frac{1}{¦Ñ_1^2}+\frac{1}{¦Ñ_2^2}$=$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ${S_n}=2{n^2}+n$£¬n¡ÊN*£¬ÔÚÊýÁÐ{bn}ÖУ¬b1=1£¬bn+1=2bn+3£¬n¡ÊN*£®
£¨1£©ÇóÖ¤£º{bn+3}ÊǵȱÈÊýÁУ»
£¨2£©Èôcn=log2£¨bn+3£©£¬ÇóÊýÁÐ$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$µÄǰnÏîºÍRn£»
£¨3£©ÇóÊýÁÐ{anbn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôx£¾-1£¬Ôòf£¨x£©=$\frac{2+x}{1+x}\sqrt{1+{{£¨1+x£©}^2}}$µÄ×îСֵÊÇ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÎªÁ˵÷²éijµØÇøÒ»ÖÜÍâÂôÐèÇóÇé¿ö£¬Ó÷ֲã³éÑù·½·¨´Ó¸ÃµØÇøµ÷²éÁ˼ÒÍ¥£¬½á¹ûÈçÏ£º
ʱ¼ä
ÊÇ·ñÐèÒªÍâÂô
ÖÜÄ©·ÇÖÜÄ©
ÐèÒª4030
²»ÐèÒª160270
£¨1£©¹À¼Æ¸ÃµØÇø¶©²Í£¬ÐèÒªÍâÂôµÄ±ÈÀý£»
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ¸ÃµØÇøµÄÍâÂôÐèÇóÓëʱ¼äÓйأ»
£¨3£©¸ù¾Ý£¨2£©µÄ½áÂÛ£¬ÄÜ·ñÌá³ö¸ü¼ÓµÄµ÷²é·½·¨À´¹À¼Æ¸ÃµØÇøµÄÍâÂôÖУ¬ÐèÒª¼ÒÍ¥µÄ±ÈÀý£¿ËµËµÀíÓÉ£¿
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨K2¡Ýk£©0.0500.0100.001
K3.8416.63510.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®£¨¢ñ£©Çóº¯Êý$y=\frac{{{x^3}-1}}{sinx}$µÄµ¼Êý£»
£¨¢ò£©Çó$\int_{-a}^a{\sqrt{{a^2}-{x^2}}}dx$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ä³¹«Ë¾ÎªÁËÁ˽âÒ»ÄêÄÚµÄÓÃË®Çé¿ö£¬³éÈ¡ÁË10ÌìµÄÓÃË®Á¿Èç±íËùʾ£º
ÌìÊý1112212
ÓÃË®Á¿/¶Ö22384041445095
£¨¢ñ£©ÔÚÕâ10ÌìÖУ¬¸Ã¹«Ë¾ÓÃË®Á¿µÄƽ¾ùÊýÊǶàÉÙ£¿Ã¿ÌìÓÃË®Á¿µÄÖÐλÊýÊǶàÉÙ£¿
£¨¢ò£©ÄãÈÏΪӦ¸ÃÓÃÆ½¾ùÊýºÍÖÐλÊýÖеÄÄÄÒ»¸öÊýÀ´ÃèÊö¸Ã¹«Ë¾Ã¿ÌìµÄÓÃË®Á¿£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸