精英家教网 > 高中数学 > 题目详情
设n为正整数,规定:,已知
(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.
【答案】分析:(1)分类讨论解出即可;
(2)利用分段函数的意义得出函数值即可;
(3)利用已知得出其周期即可;
(4)利用(2)(3)即可找出几何B中至少含有8个元素.
解答:解:(1)①当0≤x≤1时,由2(1-x)≤x,得,∴
②当1<x≤2时,∵x-1≤x恒成立,∴1<x≤2. 
由①②得f(x)≤x的解集为
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴当x=0时,f3(0)=f(f(f(0)))=f(f(2))=f(1)=0,
当x=1时,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1,
当x=2时,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.  
(3)

一般地,,(k,r∈N*),
. 
(4)由(1)知,,∴,则
由(2)知,对x=0或x=1或x=2恒有f3(x)=x,∴f12(x)=f4×3(x)=x,则0,1,2∈B.
由(3)知,对,恒有f12(x)=f4×3(x)=x,

综上所述:
∴B中至少包含8个元素.
点评:熟练掌握分类讨论思想方法、分段函数的意义、函数的周期性等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•惠州模拟)设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)
x-1
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

  设n为正整数,规定:fn(x)=,已知f(x)= .

(1)解不等式f(x)≤x

(2)设集合A={0,1,2},对任意xA,证明f3(x)=x

(3)求f2007()的值;

(4)(理)若集合B=,证明B中至少包含8个元素.

查看答案和解析>>

科目:高中数学 来源:2010年上海市宝山区高三月考数学试卷2(文理合卷)(解析版) 题型:解答题

设n为正整数,规定:,已知
(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.

查看答案和解析>>

同步练习册答案