精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x2+ex-$\frac{1}{2}$(x<0)与g(x)=x2+ln(x-a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A.$(-\sqrt{e},+∞)$B.$(-\frac{1}{{\sqrt{e}}},\sqrt{e})$C.$(-\sqrt{e},\frac{1}{{\sqrt{e}}})$D.$(-\frac{1}{{\sqrt{e}}},+∞)$

分析 由题意可得,存在x<0使f(x)=g(-x),即ex-$\frac{1}{2}$-ln(-x-a)=0在(-∞,0)上有解,从而化为函数m(x)=ex-$\frac{1}{2}$-ln(-x-a)在(-∞,0)上有零点,从而求解.

解答 解:f(x)=x2+ex-$\frac{1}{2}$(x<0)与g(x)=x2+ln(x-a)的图象上存在关于y轴对称的点,
则等价为f(x)=g(-x),在x<0时,方程有解,
即x2+ex-$\frac{1}{2}$=x2+ln(-x-a),
即ex-$\frac{1}{2}$-ln(-x-a)=0在(-∞,0)上有解,
令m(x)=ex-$\frac{1}{2}$-ln(-x-a),
则m(x)=ex-$\frac{1}{2}$-ln(-x-a)在其定义域上是增函数,
且x→-∞时,m(x)<0,
若a≥0时,x→-a时,m(x)>0,
故ex-$\frac{1}{2}$-ln(-x-a)=0在(-∞,0)上有解,
若a<0时,
则ex-$\frac{1}{2}$-ln(-x-a)=0在(-∞,0)上有解可化为:
e0-$\frac{1}{2}$-ln(-a)>0,
即ln(-a)<$\frac{1}{2}$,
解得a>-$\sqrt{e}$,
故选:A.

点评 本题考查函数与方程的应用,根据函数的图象与方程的根及函数的零点之间的关系,进行转化是解决本题的关键,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2+ex-ke-x是偶函数,且y=f(x)与g(x)=x2+a的图象有公共点,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.26%,95.44%,和99.74%.某正态曲线的密度函数是偶函数,而且该函数的最大值为
$\frac{1}{2\sqrt{2π}}$,则总体位于区间[-4,-2]的概率0.1359.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.袋中装有除颜色外完全相同的5个小球,其中红色小球3个,黄色小球2个.如果不放回地依次摸出2个小球,那么在第一次摸出红球的条件下,第二次摸出红球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过P(-2,-3)作圆(x-4)2+(y-2)2=9的两条切线,切点为A、B,则过A、B两点的直线方程为6x+5y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tanα=3,求下列各式的值:
(1)$\frac{sinα+3cosα}{2sinα+5cosα}$;         
(2)sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设p:x2-3x+2>0,q:$\frac{{{x^2}-1}}{|x|-2}$>0,则p是q(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在(0,+∞)上的单调函数f(x),?x∈(0,+∞),f[f(x)-lnx]=1,则方程f(x)-f′(x)=1的解所在区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b∈R,则下列恒成立的不等式是(  )
A.$\frac{{|{a+b}|}}{2}$≥$\sqrt{|{ab}|}$B.$\frac{b}{a}$+$\frac{a}{b}$≥2C.$\frac{{{a^2}+{b^2}}}{2}$≥(${\frac{a+b}{2}}$)2D.(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4(a+b)

查看答案和解析>>

同步练习册答案