分析 由设t=f(x)-lnx,则f(x)=lnx+t,又由f(t)=1,求出f(x)=lnx+1,则方程f(x)-f′(x)=1的解可转化成方程lnx-$\frac{1}{x}$=0的解,根据零点存在定理即可判断.
解答 解:令f(x)-lnx=t,
由函数f(x)单调可知t为正常数,
则f(x)=t+lnx,且f(t)=1,即t+lnt=1,
设$g(t)=t+lnt,{g^'}(t)=1+\frac{1}{t}>0$,
所以g(t)在(0,+∞)上是增函数,
又g(1)=1,所t=1,
∴f(x)=1+lnx,而${f^'}(x)=\frac{1}{x}$,
所以方程可化为$lnx-\frac{1}{x}=0$,
记$h(x)=lnx-\frac{1}{x}({x>0})$,
而${h^'}(x)=\frac{1}{x}+\frac{1}{x^2}>0$,
所以h(x)在(0,+∞)上是增函数,
又h(1)<0,h(2)>0,
所以方程的解在区间(1,2)内,
故答案为:(1,2).
点评 本题考查了导数的运算和零点存在定理,关键是求出f(x),属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(-\sqrt{e},+∞)$ | B. | $(-\frac{1}{{\sqrt{e}}},\sqrt{e})$ | C. | $(-\sqrt{e},\frac{1}{{\sqrt{e}}})$ | D. | $(-\frac{1}{{\sqrt{e}}},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12π | B. | $\frac{32}{3}$π | C. | 4$\sqrt{3}$π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<c<a | B. | c<a<b | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com