精英家教网 > 高中数学 > 题目详情
9.执行如图的程序框图,则输出的q的值为(  )
A.10B.34C.36D.154

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算q值并输出,模拟程序的运行过程,即可得到答案.

解答 解:模拟程序的运行,可得
p=1,q=1,i=1
p=1,
满足条件i<5,q=2,i=2,p=2
满足条件i<5,q=4,i=3,p=6
满足条件i<5,q=10,i=4,p=24
满足条件i<5,q=34,i=5,p=120
不满足条件i<5,退出循环,输出q的值为34.
故选:B.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=ax-\frac{a}{x}+2lnx$(a∈R).
(Ⅰ)若函数f(x)为单调递减函数,求实数a的取值范围;
(Ⅱ)当x1,x2∈(0,+∞)时,不等式 $[\frac{{f({x_1})}}{x_2}-\frac{{f({x_2})}}{x_1}]({x_1}-{x_2})<0$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不等式|x-2|<a(a∈N*)的解集为A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A.
①求a的值;
②求函数f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,正方形ABCD的边长为2,E,F分别为AB,AD的中点,G为线段CE上的一个动点,设$\frac{CG}{CE}$=x,S△GDF=y,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f($\sqrt{x+1}$)的定义域为[0,3],则f(x)的定义域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足a1=10,an+1-an=2n(n∈N*),则$\frac{a_n}{n}$的最小值为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex,g(x)=kx+1.
(I)求函数y=f(x)-(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在实数m使对任意x∈(0,m)都有|f(x)-g(x)|>x成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为(  )
A.O-ABC是正三棱锥(底面为正三角形,顶点在底面的投影为底面的中心)
B.直线OB∥平面ACD
C.OD⊥平面ABC
D.直线CD与平面ABC所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在边长为4cm的正方形ABCD中,E,F分别为BC,CD的中点,M,N分别为AB,CF的中点,现沿AE,AF,EF折叠,使B,C,D三点重合,重合后的点记为B,构成一个三棱锥,则MN与平面AEF的位置关系是MN∥平面AEF.

查看答案和解析>>

同步练习册答案