| A. | B. | C. | D. |
分析 根据正方形的性质求出G到AD的距离,得到f(x)的函数解析式,即可得出答案.
解答 解:∵正方形ABCD的边长为2,E,F分别是AB,AD的中点,![]()
∴DF=1,CE=$\sqrt{5}$,sin∠BCE=$\frac{BE}{CE}=\frac{\sqrt{5}}{5}$,
过G做MN∥AB,交AD,BC于M,N,则MN=2.
∵$\frac{CG}{CE}=x$,∴CG=$\sqrt{5}$x.∴GN=CG•sin∠BCE=x,
∴GM=MN-GN=2-x,
∴S△GDF=$\frac{1}{2}DF•GM$=$\frac{1}{2}×1×(2-x)$=1-$\frac{1}{2}x$.
∴f(x)=1-$\frac{1}{2}$x在[0,1]上为减函数,且为一次函数.
故选:D.
点评 本题考查了函数解析式的求解及基本初等函数的图象,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{\sqrt{3}+1}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{{\sqrt{3}-1}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com