分析 ①利用已知条件,代入得到a的范围即可.
②利用绝对值三角不等式直接求解函数的最小值即可.
解答 解:①因为$\frac{3}{2}∈A$,且$\frac{1}{2}∉A$,
所以$|{\frac{3}{2}-2}|<a$,且$|{\frac{1}{2}-2}|≥a$
解得$\frac{1}{2}<a≤\frac{3}{2}$,又因为a∈N*,所以a=1;
②因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取得等号,
所以f(x)的最小值为3.
点评 本题考查集合的应用,函数的最值的求法,绝对值三角不等式的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com