精英家教网 > 高中数学 > 题目详情

【题目】已知圆过点,且圆心在直线上.

(1) 求圆的方程;

(2)问是否存在满足以下两个条件的直线:斜率为直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,请说明理由.

【答案】(1) ;(2) 存在这样的两条直线,其方程是

【解析】

试题(1)将方程设为圆的一般方程,,根据条件表示为的三元一次方程解方程组即求得圆的方程;

(2)首先设直线存在,其方程为,它与圆C的交点设为A、B

然后联立直线与圆的方程,得到根与系数的关系,根据,得到代入直线方程与根与系数的关系解得b得到直线方程并需验证.

试题解析:解:()设圆C的方程为

解得 D=-6, E=4, F=4

圆C方程为:

()设直线存在,其方程为,它与圆C的交点设为A、B

则由 (*)

AB为直径,

容易验证时方程(*)的

故存在这样的两条直线,其方程是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C,直线l

时,若圆C与直线l交于AB两点,过点AB分别作l的垂线与y轴交于DE两点,求的值;

过直线l上的任意一点P作圆的切线为切点,若平面上总存在定点N,使得,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=2x2+(x﹣2a)|x﹣a|在区间[﹣3,1]上不是单调函数,则实数a的取值范围是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:

(1)PA∥平面BDE;
(2)BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1底面ABC,则三棱锥B1-ABC1的体积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,PB、PD与平面ABCD所成角的正切值依次是1、,AP=2,E、F依次是PB、PC的中点.

(1)求证:PB平面AEFD;

(2)求直线EC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点F1 , F2和上下两个顶点B1 , B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2 , 斜率为k(k≠0)的直线与椭圆C相交于E,F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′.求证:kk′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同直线的极坐标方程为,曲线C的参数方程为为参数,设直线l与曲线C交于AB两点.

写出直线的普通方程与曲线C的直角坐标方程;

已知点P在曲线C上运动,求点P到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2 )>f(﹣m2+2m﹣2),则m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案