【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2﹣ )>f(﹣m2+2m﹣2),则m的取值范围是( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知圆过点,且圆心在直线上.
(1) 求圆的方程;
(2)问是否存在满足以下两个条件的直线:①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班学生一次数学考试成绩频率分布直方图如图所示,数据分组依次为[70,90),[90,110),[110,130),[130,150],若成绩大于等于90分的人数为36,则成绩在[110,130)的人数为( )
A.12
B.9
C.15
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +b(x≠0),其中a,b∈R.若对任意的a∈[ ,2],不等式f(x)≤10在x∈[ ,1]上恒成立,则b的取值范围为明 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求直线DQ与面PQC成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是半圆的直径,,是将半圆圆周四等分的三个分点.
(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;
(2)在半圆内任取一点,求的面积大于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合计 |
参考数据:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的右焦点为,右顶点、上顶点分别为点,
已知椭圆的焦距为,且.
(1)求椭圆的方程;
(2)若过点的直线交椭圆于两点,当面积取得最大时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com