精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x+ +b(x≠0),其中a,b∈R.若对任意的a∈[ ,2],不等式f(x)≤10在x∈[ ,1]上恒成立,则b的取值范围为明

【答案】(﹣∞, ]
【解析】解:∵对任意的a∈[ ,2],不等式f(x)≤10在x∈[ ,1]上恒成立,
∴当a= 时,f(x)最大值为f(1)=1+ +b= +b
当a=2时,f(x)最大值为f( )= +8+b= +b
显然 +b> +b,
+b≤10,
∴b≤
所以答案是:(﹣∞, ]
【考点精析】利用函数单调性的性质对题目进行判断即可得到答案,需要熟知函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:

(1)PA∥平面BDE;
(2)BD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同直线的极坐标方程为,曲线C的参数方程为为参数,设直线l与曲线C交于AB两点.

写出直线的普通方程与曲线C的直角坐标方程;

已知点P在曲线C上运动,求点P到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔业公司年初用81万元购买一艘捕鱼船,第一年各种费用为1万元,以后每年都增加2万元,每年捕鱼收益30万元.

问第几年开始获利?

若干年后,有两种处理方案:方案一:年平均获利最大时,以46万元出售该渔船;

方案二:总纯收入获利最大时,以10万元出售该渔船问:哪一种方案合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数

(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在凸四边形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.设∠ABC=θ.

(1)若θ=30°,求AD的长;
(2)当θ变化时,求BD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2 )>f(﹣m2+2m﹣2),则m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a、b、c,a=btanA,且B为钝角.
(1)证明:B﹣A=
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面分别是的中点.

(1)求证:平面平面

(2)若是线段上一点,求三棱锥的体积.

查看答案和解析>>

同步练习册答案