【题目】已知函数f(x)=x+
+b(x≠0),其中a,b∈R.若对任意的a∈[
,2],不等式f(x)≤10在x∈[
,1]上恒成立,则b的取值范围为明 .
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同
直线
的极坐标方程为
,曲线C的参数方程为
为参数
,设直线l与曲线C交于A,B两点.
写出直线
的普通方程与曲线C的直角坐标方程;
已知点P在曲线C上运动,求点P到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某渔业公司年初用81万元购买一艘捕鱼船,第一年各种费用为1万元,以后每年都增加2万元,每年捕鱼收益30万元.
问第几年开始获利?
若干年后,有两种处理方案:方案一:年平均获利最大时,以46万元出售该渔船;
方案二:总纯收入获利最大时,以10万元出售该渔船
问:哪一种方案合算?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出这些数据的频率分布直方图;
![]()
(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在凸四边形ABCD中,AB=1,BC=
,AC⊥DC,CD=
AC.设∠ABC=θ. ![]()
(1)若θ=30°,求AD的长;
(2)当θ变化时,求BD的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2﹣
)>f(﹣m2+2m﹣2),则m的取值范围是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C的对边分别为a、b、c,a=btanA,且B为钝角.
(1)证明:B﹣A=
;
(2)求sinA+sinC的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥
中,底面
是边长为4的正方形,
是正三角形,平面
平面
,
分别是
的中点.
![]()
(1)求证:平面
平面
;
(2)若
是线段
上一点,求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com