精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C的对边是a,b,c,已知2b-c=2acosC.
(Ⅰ)求A;
(Ⅱ)若4(b+c)=3bc,a=2$\sqrt{3}$,求△ABC的面积S.

分析 (I)由2b-c=2acosC,利用余弦定理可得:2b-c=2a×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,化为:b2+c2-a2=bc,再利用余弦定理即可得出.
(II)由a=2$\sqrt{3}$,b2+c2-a2=bc,可得b2+c2-12=bc,与联立4(b+c)=3bc,解得:bc,利用三角形面积计算公式即可得出.

解答 解:(I)∵2b-c=2acosC,∴2b-c=2a×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
化为:b2+c2-a2=bc,
∴bc=2bccosA,可得cosA=$\frac{1}{2}$,A∈(0,π),
解得A=$\frac{2π}{3}$.
(II)∵a=2$\sqrt{3}$,b2+c2-a2=bc,
∴b2+c2-12=bc,
与联立4(b+c)=3bc,解得:bc=$\frac{16}{3}$.
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{16}{3}×\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$.

点评 本题考查了余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{ax+1}{x+b}$>1的解集为(-∞,-1)∪(3,+∞),则不等式x2+ax-2b<0的解集为(  )
A.(-3,-2)B.$(-\frac{1}{2},-\frac{1}{3})$C.(-∞,-3)∪(-2,+∞)D.$(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=t(t≠-1),且an+1=$\left\{\begin{array}{l}{2{a}_{n}+n,n为奇数}\\{{a}_{n}-\frac{1}{2}n,n为偶数}\end{array}\right.$.
(1)证明:数列{a2n+1}是等比数列;
(2)若数列{an}的前2n项和为S2n
①当t=1时,求S2n
②若{S2n}单调递增,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|$\frac{x}{x-1}$≥0,x∈R},N={y|y=3x2+1,x∈R},则M∩N为(  )
A.{x|x>1}B.{x|x≥1}C.{x>1或x≤0}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex+4x-3的零点为x0,则x0所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示的曲线为C,给出以下四个判断:
①当1<t<4时,曲线C表示椭圆;
②当t>4或t<1时曲线C表示双曲线;
③若曲线C表示焦点在x轴上的椭圆,则1<t<$\frac{5}{2}$;
④若曲线C表示焦点在x轴上的双曲线,则t>4,
其中判断正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.tan$\frac{2π}{3}$=(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x-3,x∈[-2,1],函数f(x)的值域为[-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设p:关于x的不等式x+$\frac{1}{x}$≥a2-a对任意的x∈(0,+∞)恒成立;q:关于x的方程x+|x-1|=2a有实数解.若p∧q为真,求实数a的取值范围.

查看答案和解析>>

同步练习册答案