分析 (I)由2b-c=2acosC,利用余弦定理可得:2b-c=2a×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,化为:b2+c2-a2=bc,再利用余弦定理即可得出.
(II)由a=2$\sqrt{3}$,b2+c2-a2=bc,可得b2+c2-12=bc,与联立4(b+c)=3bc,解得:bc,利用三角形面积计算公式即可得出.
解答 解:(I)∵2b-c=2acosC,∴2b-c=2a×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
化为:b2+c2-a2=bc,
∴bc=2bccosA,可得cosA=$\frac{1}{2}$,A∈(0,π),
解得A=$\frac{2π}{3}$.
(II)∵a=2$\sqrt{3}$,b2+c2-a2=bc,
∴b2+c2-12=bc,
与联立4(b+c)=3bc,解得:bc=$\frac{16}{3}$.
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{16}{3}×\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$.
点评 本题考查了余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2) | B. | $(-\frac{1}{2},-\frac{1}{3})$ | C. | (-∞,-3)∪(-2,+∞) | D. | $(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>1} | B. | {x|x≥1} | C. | {x>1或x≤0} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{4}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{3}{4}$) | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com