分析 (1)由题意可得:bn=a2n+1,则b1=a2+1,b1=2(t+1)≠0,$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{2({n+1})}}+1}}{{{a_{2n}}+1}}=\frac{{({2{a_{2n+1}}+2n+1})+1}}{{{a_{2n}}+1}}=\frac{{[{2({{a_{2n}}-n})+2n+1}]+1}}{{{a_{2n}}+1}}=\frac{{2({{a_{2n}}+1})}}{{{a_{2n}}+1}}=2$,数列{a2n+1}是等比数列;
(2)${a_{2n}}=({t+1})•{2^n}-1=2{a_{2n-1}}+2n-1$,求得a2n-1,${a_{2n-1}}+{a_{2n}}=3({t+1})•{2^{n-1}}-n-1$,分组即可求得S2n=$3({t+1})•({1+2+…+{2^{n-1}}})-({1+2+…+n})-n=3({t+1})•({{2^n}-1})-\frac{{n({n+3})}}{2}$,①当t=1时,${S_{2n}}=6({{2^n}-1})-\frac{{n({n+3})}}{2}=3×{2^{n+1}}-\frac{{n({n+3})}}{2}-6$,
②${S_{2n}}-{S_{2n-2}}=3({t+1})•{2^{n-1}}-n-1>0$对n≥2且n∈N*恒成立,即$3({t+1})>\frac{n+1}{{{2^{n-1}}}}$,设${P_n}=\frac{n+1}{{{2^{n-1}}}},n≥2$,利用作差法,可得{Pn}在n≥2且n∈N*单调递减,$3({t+1})>\frac{3}{2}$,即可求得t的取值范围.
解答 解:(1)证明:设bn=a2n+1,则b1=a2+1,
∵a2=2a1+1=2t+1,
∴b1=2(t+1)≠0,…(1分)
∵$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{2({n+1})}}+1}}{{{a_{2n}}+1}}=\frac{{({2{a_{2n+1}}+2n+1})+1}}{{{a_{2n}}+1}}=\frac{{[{2({{a_{2n}}-n})+2n+1}]+1}}{{{a_{2n}}+1}}=\frac{{2({{a_{2n}}+1})}}{{{a_{2n}}+1}}=2$,…(3分)
∴数列{bn}是公比为2的等比数列,故数列{a2n+1}是等比数列,…(4分)
∴${b_n}={b_1}•{2^{n-1}}=2({t+1})•{2^{n-1}}=({t+1})•{2^n}$,
∴${a_{2n}}=({t+1})•{2^n}-1$,…(6分)
(2)由(1)得,${a_{2n}}=({t+1})•{2^n}-1=2{a_{2n-1}}+2n-1$,
∴${a_{2n-1}}=({t+1})•{2^{n-1}}-n$,…(7分)
∴${a_{2n-1}}+{a_{2n}}=3({t+1})•{2^{n-1}}-n-1$,…(8分)
∴S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n),
=$3({t+1})•({1+2+…+{2^{n-1}}})-({1+2+…+n})-n=3({t+1})•({{2^n}-1})-\frac{{n({n+3})}}{2}$,…(10分)
①当t=1时,
∴${S_{2n}}=6({{2^n}-1})-\frac{{n({n+3})}}{2}=3×{2^{n+1}}-\frac{{n({n+3})}}{2}-6$;…(11分)
②∵{S2n}单调递增,
∴${S_{2n}}-{S_{2n-2}}=3({t+1})•{2^{n-1}}-n-1>0$对n≥2且n∈N*恒成立,…(12分)
即$3({t+1})>\frac{n+1}{{{2^{n-1}}}}$,设${P_n}=\frac{n+1}{{{2^{n-1}}}},n≥2$,
则${P_{n+1}}-{P_n}=\frac{n+2}{2^n}-\frac{n+1}{{{2^{n-1}}}}=\frac{-n}{2^n}<0$,
∴{Pn}在n≥2且n∈N*单调递减,…(14分)
∵${P_2}=\frac{3}{2}$,
∴$3({t+1})>\frac{3}{2}$,即$t>-\frac{1}{2}$,
故t的取值范围为$({-\frac{1}{2},+∞})$.…(16分)
点评 本题考查等比数列的证明,数列前n项和的求法,考查构造辅助函数及作差法求数列的单调性,考查数列与不等式的综合应用,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com