精英家教网 > 高中数学 > 题目详情
2.若函数t(x)在定义域内满足t($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{t({x}_{1})+t({x}_{2})}{2}$此时我们称函数t(x)在定义域内具有性质M.
(1)已知函数f(x)=x2+ax+b,求证:函数f(x)在定义域内具有性质M;
(2)若函数g(x)=3x,判断函数g(x)在定义域内是否具有性质M,并说明理由;
(3)设函数h(x)=loga[(2a-1)x+1],在定义域内具有性质M,指出a的取值范围.

分析 (1)直接利用性质化简求解,验证即可.
(2)根据函数的性质,结合指数函数的图象和性质,基本不等式,可得结论.
(3)通过复合函数的单调性,结合已知条件,说明a的范围即可.

解答 证明:(1)函数f(x)=x2+ax+b,任取两个实数x1,x2(x1≠x2),
f($\frac{{x}_{1}+{x}_{2}}{2}$)=($\frac{{x}_{1}+{x}_{2}}{2}$)2+a$•\frac{{x}_{1}+{x}_{2}}{2}$+b=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}{x}_{2}}^{\;}}{4}+\frac{{a(x}_{1}+{x}_{2})}{2}+b$.
$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{1}{2}$(x12+ax1+b+x22+ax2+b)=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+a({{x}_{1}}^{\;}+{{x}_{2}}^{\;})}{2}+b$.
∵$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}{x}_{2}}^{\;}}{4}≤\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{2}$,
∴f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立
(2)解:若f(x)=3x
则任取两个实数x1,x2(x1≠x2),
f($\frac{{x}_{1}+{x}_{2}}{2}$)=${3}^{\frac{{x}_{1}+{x}_{2}}{2}}$=$\sqrt{{3}^{{x}_{1}+{x}_{2}}}$=$\sqrt{{3}^{{x}_{1}}•{3}^{{x}_{2}}}$,
$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{{3}^{{x}_{1}}+{3}^{{x}_{2}}}{2}$,
由函数f(x)的值域为(0,+∞),可得:${3}^{{x}_{1}}>0,{3}^{{x}_{2}}>0$,
由基本不等式可得$\sqrt{{3}^{{x}_{1}}•{3}^{{x}_{2}}}<\frac{{3}^{{x}_{1}}+{3}^{{x}_{2}}}{2}$,即f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立,
函数g(x)在定义域内是否具有性质M;
(3)函数t(x)在定义域内满足t($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{t({x}_{1})+t({x}_{2})}{2}$,称函数t(x)在定义域内具有性质M,
函数h(x)=loga[(2a-1)x+1],在定义域内具有性质M,
可知:$\left\{\begin{array}{l}0<a<1\\ 2a-1>0\end{array}\right.$,所以$\frac{1}{2}<a<1$.
a的取值范围:($\frac{1}{2},1$).

点评 本题考查的知识点是指数函数的图象和性质,实际考查函数的凸凹性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f (x)=$\left\{\begin{array}{l}{e}^x-k,x≤0\\(1-k)x+k,x>0\end{array}$  是R上的增函数,则实数k的取值范围是(  )
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.( $\frac{1}{2}$,$\frac{2}{3}$ )D.[$\frac{1}{2}$,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:${log}_{2}\sqrt{2}$+(log43+log83)(log32+log92)-$lo{g}_{\frac{1}{2}}\root{4}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=ax2+bx+c,a,b,c是常数且a≠0,满足条件:f(0)=3,f(3)=6,且对任意的x∈R有f(1+x)=f(1-x).
(1)求函数f(x)的解析式;
(2)问是否存在实数m,n(m<n),使f(x)的定义域和值域分别是[m,n],[2m,2n]?若存在,求出m,n;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.满足f(x+1)=$\frac{1}{2}$f(x)的函数解析式是(  )
A.f(x)=$\frac{x}{2}$B.f(x)=x+$\frac{1}{2}$C.f(x)=2-xD.f(x)=log${\;}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x|x-a|-2,当x∈(0,2]时恒有f(x)<0,则实数a的取值范围是1<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:mx-y+1-m=0和圆C:x2+(y-1)2=5
(1)求证:不论m为何值,直线l与圆C总相交;
(2)设直线l与圆C的交点为A,B,若|AB|=$\sqrt{17}$,求直线的倾斜角.
(3)求弦AB的中点M的轨迹方程
(4)若定点p(1,1)分弦AB为$\frac{|AP|}{|PB|}$=$\frac{1}{2}$.求此时直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)若函数f(x)有极小值,且极小值为4,试求a的值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对?a∈(-3,-2),?x1,x2∈[1,3]恒有(m+ln3)a-21n3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC的三个顶点分别为A(1,0),B(1,4),C(3,2),直线l经过点D(0,4).
(1)判断△ABC的形状;
(2)求△ABC外接圆M的方程;
(3)若直线l与圆M相交于P,Q两点,且PQ=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

同步练习册答案