【题目】已知
的三个顶点落在半径为
的球
的表面上,三角形有一个角为
且其对边长为3,球心
到
所在的平面的距离恰好等于半径
的一半,点
为球面上任意一点,则
三棱锥的体积的最大值为( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴非负半轴为极轴且取相同的单位长度建立极坐标系.已知点
轨迹的参数方程为
(
,
为参数),点
在曲线
上.
(1)求点
轨迹的普通方程和曲线
的直角坐标方程;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三个顶点落在半径为
的球
的表面上,三角形有一个角为
且其对边长为3,球心
到
所在的平面的距离恰好等于半径
的一半,点
为球面上任意一点,则
三棱锥的体积的最大值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若
,则称
为
的“不动点”,若
,则称
为
的“稳定点”,函数
的“不动点”和“稳定点”的集合分别记为
和
,即
,
,那么,
(1)求函数
的“稳定点”;
(2)求证:
;
(3)若
,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设单调函数
的定义域为
,值域为
,如果单调函数
使得函数
的值域也是
,则称函数
是函数
的一个“保值域函数”.已知定义域为
的函数
,函数
与
互为反函数,且
是
的一个“保值域函数”,
是
的一个“保值域函数”,则
__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且
,
.
![]()
求证:(1)直线DE
平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数
满足不等式
;
命题q:关于
不等式
对任意的
恒成立.
(1)若命题
为真命题,求实数
的取值范围;
(2)若“
”为假命题,“
”为真命题,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com