【题目】在平面直角坐标系
中,以坐标原点
为极点,
轴非负半轴为极轴且取相同的单位长度建立极坐标系.已知点
轨迹的参数方程为
(
,
为参数),点
在曲线
上.
(1)求点
轨迹的普通方程和曲线
的直角坐标方程;
(2)求
的最大值.
科目:高中数学 来源: 题型:
【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:
第一车间 | 第二车间 | 第三车间 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.
(1)求x的值;
(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”,若f[f(x0)]=x0,则称x0为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x},那么:
(1)函数g(x)=x2-2的“不动点”为______;
(2)集合A与集合B的关系是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为
,点
在椭圆上,
Ⅰ
求椭圆C的方程.
Ⅱ
斜率为k的直线l过点F且不与坐标轴垂直,直线l交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,椭圆
的中心为坐标原点,焦点
,
在
轴上,且
在抛物线
的准线上,点
是椭圆
上的一个动点,
面积的最大值为
.
![]()
(1)求椭圆
的方程;
(2)过焦点
,
作两条平行直线分别交椭圆
于
,
,
,
四个点.求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的方程为
.
(1)求圆
的直角坐标方程;
(2)设圆
与直线
交于点
,若点
的坐标为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三个顶点落在半径为
的球
的表面上,三角形有一个角为
且其对边长为3,球心
到
所在的平面的距离恰好等于半径
的一半,点
为球面上任意一点,则
三棱锥的体积的最大值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
在区间
上存在零点,求实数
的取值范围;
(2)当
时,若对任意的
、
,
恒成立,求实数
的取值范围;
(3)若函数
在
上的值城为区间
,是否存在常数
,使得区间
的长度为
?若存在,求出
的值;若不存在,请说明理由.(注:区间
的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com