精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的单调区间;

2)若函数处取得极大值,求实数的取值范围

【答案】(1)的单调递减区间为,单调递增区间为(2)

【解析】

1的定义域为,把代入函数解析式,求出导函数,利用导函数的零点对定义域分段,可得原函数的单调区间;
2.对a分类求解可得使fx)在x1处取得极值的a的取值范围.

解:(1的定义域为

时,

,得.

;若.

所以的单调递减区间为,单调递增区间为.

2

①当时,,令,得

,得.所以处取得极大值.

②当时,,由①可知处取得极大值.

③当时,,则无极值.

④当时,令,得;令,得.

所以处取得极大值.

⑤当时,令,得;令,得.

所以处取得极小值.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系.已知点轨迹的参数方程为为参数),点在曲线上.

(1)求点轨迹的普通方程和曲线的直角坐标方程;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且.

求证:(1)直线DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足对于任意实数都有,且当时,

1)判断的奇偶性并证明;

2)判断的单调性,并求当时,的最大值及最小值;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数存在与直线平行的切线,求实数的取值范围;

(2)当时,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数且当x>0f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)画出f(x)的图像并指出f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数满足不等式

命题q:关于不等式对任意的恒成立.

1)若命题为真命题,求实数的取值范围;

2)若“为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/千元

5

6

7

8

月薪/千元

4

6

8

10

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;

(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。

(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度/℃

21

23

24

27

29

32

产卵数/

6

11

20

27

57

77

(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);

(2)若用非线性回归模型求的回归方程为 且相关指数

( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,相关指数

查看答案和解析>>

同步练习册答案